Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6960, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521826

RESUMO

This work presents an outline of a detection system that employs the Compton spectrometer method to assess the non-linearity of scintillator light yield. A novel approach is introduced, leading to more accurate measurements through the separate determination of the intrinsic light output parameters and the non-linearity of the scintillators. Key features of this system include the use of a portable scintillation detector with three photomultiplier tubes for precise measurement of the average number of detected photoelectrons and the incorporation of recent advancements in correction techniques for accidental coincidences. The integration of digital acquisition, offline data analysis, and geometric adaptation reduces the time required to perform a measurement. The developed detector can simultaneously measure different timing properties, as well as the relative intensities following ionization excitation in a scintillator. The system's performance is demonstrated through measurements of the light yield dependence on the deposited energy for commercially available liquid, plastic, and inorganic scintillators. Such instrumentation serves as a valuable tool in the development of novel scintillating materials, including liquid or solid organic scintillators, inorganic scintillators, and composite scintillators for electron detection, in addition to traditional X-ray or γ -ray detection.

2.
EJNMMI Phys ; 10(1): 73, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993667

RESUMO

INTRODUCTION: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. MATERIALS AND METHODS: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68-107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. RESULTS: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12-1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. CONCLUSION: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.

3.
Appl Radiat Isot ; 201: 110992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657226

RESUMO

In the Triple to Double Coincidence Ratio method in Liquid Scintillation Counting, the detection efficiency is calculated from the value of a free parameter describing the intrinsic light yield of the counting system. This model is generally based on a Poisson distribution of the number of photoelectrons detected and the detection efficiency is obtained from the complement of the non-detection efficiency. In the classical free parameter model, the mean of the Poisson distribution, m, is a constant but some variability of this mean could be expected from optical effects due to internal reflections inside the LS source or from non-homogeneity of the detection efficiency of the photomultiplier tubes. Then, m becomes a random variable and the distribution of the photoelectrons becomes a compound Poisson distribution, with a random variable as mean value. This paper explores the implications of the variance of m, which were, to our knowledge, never considered previously in the uncertainty budget of TDCR measurements.

4.
Appl Radiat Isot ; 201: 111013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688905

RESUMO

Despite widespread radon-in-water measurements, no primary radon-in-water standards currently exist. This work aims to bridge this gap by developing a system to produce radon-in-water reference materials. The system relies on cryogenic, loss-free transfer of radon, which is standardized through defined solid angle measurements, to a radon standard in water. It allows for preparation of liquid scintillation and gamma-ray spectrometry samples with traceable radon-in-water concentrations. The system's design, functionality, and the results of pilot performance tests are described.

5.
Appl Radiat Isot ; 200: 110947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467537

RESUMO

A bilateral comparison to determine the activity concentration of the same 125I solution was organized. As electron-capture radionuclide with a rather high atomic number, 125I must be regarded as difficult to measure. The situation is partly exacerbated by the fact that some established standardization methods, like photon-photon coincidence counting, can no longer be applied due to the unavailability of appropriate equipment and expertise. One aim of this work is to compare modern liquid scintillation counting methods for the standardization of 125I. Both participating metrology institutes have used their custom-built triple-to-double-coincidence ratio (TDCR) counters and the determined activity concentrations are in excellent agreement even though the ways to analyze the data and to compute counting efficiencies were widely independent. The results also agree with the outcome of 4π-γ counting that was carried out at LNHB. In both laboratories, the measurements were complemented by measurements with several secondary standardization methods which even allow to establish a link to the CCRI(II)-K2.I-125(2) comparison started in 2004. A good agreement between the TDCR results and the key comparison reference value of the 2004/2005 comparison was obtained.

6.
Appl Radiat Isot ; 176: 109845, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34229146

RESUMO

This work presents measurements of the half-lives of excited nuclear states of 237Np and 57Fe using a liquid scintillation (LS) spectrometer and a gamma detector. A novel approach for the determination of the half-lives of some excited states is presented which uses only LS counting data from a detector with two PMTs. The lifetime of the 1st and 2nd excited states of 57Fe were obtained without the use of a gamma detector. The obtained value for the 59.54 keV level of 237Np is 67.60(25) ns. The obtained values for the 14.4 keV and 136.5 keV levels of 57Fe are 97.90(40) ns and 8.780(36) ns, respectively. The half-life results from this study are consistent with the average value found in the reference decay data tables and have a lower uncertainty.

7.
Sci Rep ; 11(1): 12424, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127742

RESUMO

This work explores the distribution of time intervals between signals from the photomultiplier tubes (PMTs) of a liquid scintillation counting (LSC) system when a scintillation burst caused by an ionizing particle is detected. This distribution is termed the cross-correlation distribution and it is shown that it contains information about the probability to detect a scintillation event. A theoretical model that describes the cross-correlation distribution is derived. The model can be used to estimate the mean number of detected photons in a LSC measurement, which allows the calculation of the detection efficiency. The theoretical findings are validated by Monte Carlo simulations and by experiments with low-energy beta-emitting and electron-capture radionuclides ([Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]), with dedicated LSC systems and several commercial LSC cocktails. The results show that some of the parameters of the cross-correlation distribution such as the peak height or the kurtosis can be used as detection efficiency estimators or quenching indicators in LSC. Thus, although the time domain and the cross-correlation distribution have received little to no attention in the practice of LSC, they have the capacity to bring significant improvements in almost all LSC applications related to activity determination of low-energy beta-emitting and electron-capture radionuclides. The results also suggest concepts for the development of innovative LSC systems.

8.
Appl Radiat Isot ; 163: 109223, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32561059

RESUMO

The responses of the three photomultiplier tubes (PMTs) in a triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) system are often not identical. Such asymmetries can have a significant influence on activity determinations. The problem is often solved by means of a minimization algorithm which can easily be applied when analytical methods are used for the efficiency calculation, as is usually done for pure beta emitters. However, for radionuclides with more complex decay schemes, the counting efficiencies are often calculated with stochastic methods and the computation of the required corrections becomes very challenging. This paper presents a new numerical method to overcome the asymmetry problem for such complex decays and a comprehensive study on 55Fe is described in detail. For the measurements, the asymmetry was varied by means of grey filter films which were placed in front of one of the photomultiplier tubes. In the case of the pure electron-capture (EC) radionuclide 55Fe, the asymmetry can also be taken into account with a very simple correction which is derived assuming monoenergetic emissions. This work is also of great importance for the planned extension of the International Reference System (SIR) at the BIPM which will be used for international comparisons in radionuclide metrology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...