Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869480

RESUMO

While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.


Assuntos
Antígeno B7-H1 , Interferon Tipo I , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Glicólise , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Ácido Láctico/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Transdução de Sinais , Masculino
2.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119783, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871226

RESUMO

Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLKK63R using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLKK63R do not develop into viable mice. However, heterozygotes are viable and fertile with no overt phenotypes. Analyses of mouse embryonic fibroblasts show that expression of SLKK63R results in a 50% decrease in kinase activity in heterozygotes. In contrast to previous studies, our data show that SLK does not form homodimers and that the kinase defective allele does not act in a dominant negative fashion. Expression of SLKK63R leads to altered Rac1 and RhoA activity, increased stress fiber formation and delayed focal adhesion turnover. Our data support a previously observed role for SLK in cell migration and suggest that at least 50% kinase activity is sufficient for embryonic development.

3.
Physiol Rep ; 12(1): e15897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163671

RESUMO

SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.


Assuntos
Nefrose , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Paxilina/metabolismo , Vinculina/metabolismo , Talina/genética , Talina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Doxorrubicina/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo
4.
Cells ; 13(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201278

RESUMO

Targeted therapy resistance frequently develops in melanoma due to intratumor heterogeneity and epigenetic reprogramming. This also typically induces cross-resistance to immunotherapies. Whether this includes additional modes of therapy has not been fully assessed. We show that co-treatments of MAPKi with VSV-based oncolytics do not function in a synergistic fashion; rather, the MAPKis block infection. Melanoma resistance to vemurafenib further perturbs the cells' ability to be infected by oncolytic viruses. Resistance to vemurafenib can be induced by the loss of SOX10, a common proliferative marker in melanoma. The loss of SOX10 promotes a cross-resistant state by further inhibiting viral infection and replication. Analysis of RNA-seq datasets revealed an upregulation of interferon-stimulated genes (ISGs) in SOX10 knockout populations and targeted therapy-resistant cells. Interestingly, the induction of ISGs appears to be independent of type I IFN production. Overall, our data suggest that the pathway mediating oncolytic resistance is due to the loss of SOX10 during acquired drug resistance in melanoma.


Assuntos
Melanoma , Vírus Oncolíticos , Vírus de RNA , Humanos , Vírus Oncolíticos/genética , Melanoma/terapia , Vemurafenib , Epigenômica , Interferons , RNA
5.
iScience ; 25(12): 105524, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36437876

RESUMO

SOX10 is a key regulator of melanoma progression and promotes a melanocytic/differentiated state. Here we identified melanoma cell lines lacking SOX10 expression which retain their in vivo growth capabilities. More importantly, we find that SOX10 can regulate T-cell infiltration in melanoma while also decreasing common cancer stem cell (CSC) properties. We show that SOX10 regulates CEACAM1, a surface protein with immunomodulatory properties. SOX10 directly binds to a distal CEACAM1 promoter region approximately 3-4kbps from the CEACAM1 transcriptional start site. Furthermore, we show that a SOX10-CEACAM1 axis can suppress CD8+ T-cell infiltration as well as reduce CSC pool within tumors, leading to reduced tumor growth. Overall, these results identify SOX10 as a direct regulator of CEACAM1, and uncover both a pro- and anti-tumorigenic roles for SOX10 in melanoma.

6.
Breast Cancer Res ; 23(1): 107, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809697

RESUMO

BACKGROUND: Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. METHODS: Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. RESULTS: Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFß and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFß can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. CONCLUSION: Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.


Assuntos
Neoplasias da Mama/genética , Moléculas de Adesão Celular/genética , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
7.
ACS Infect Dis ; 7(11): 3034-3051, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34658235

RESUMO

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Atovaquona/farmacologia , Humanos , Estados Unidos
8.
J Cell Sci ; 134(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961052

RESUMO

Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.


Assuntos
Apoptose , Transdução de Sinais , Animais , Citoesqueleto , Microtúbulos , Fosforilação
10.
Breast Cancer Res ; 23(1): 55, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985544

RESUMO

BACKGROUND: Approximately 5-10% of HER2-positive breast cancers can be defined by low expression of the Ste20-like kinase, SLK, and high expression of SOX10. Our lab has observed that genetic deletion of SLK results in the induction of Sox10 and significantly accelerates tumor initiation in a HER2-induced mammary tumor model. However, the mechanism responsible for the induction of SOX10 gene expression in this context remains unknown. METHODS: Using tumor-derived cell lines from MMTV-Neu mice lacking SLK and biochemical approaches, we have characterized the signaling mechanisms and relevant DNA elements driving Sox10 expression. RESULTS: Biochemical and genetic analyses of the SOX10 regulatory region in SLK-deficient mammary tumor cells show that Sox10 expression is dependent on a novel -7kb enhancer that harbors three SoxE binding sites. ChIP analyses demonstrate that Sox9 is bound to those elements in vivo. Our data show that AKT can directly phosphorylate Sox9 in vitro at serine 181 and that AKT inhibition blocks Sox9 phosphorylation and Sox10 expression in SLK(-/-) tumor cells. AKT-mediated Sox9 phosphorylation increases its transcriptional activity on the Sox10 -7kb enhancer without altering its DNA-binding activity. Interestingly, analysis of murine and human mammary tumors reveals a direct correlation between the levels of active phospho-Sox9 S181 and Sox10 expression. CONCLUSIONS: Our results have identified a novel Sox10 enhancer and validated Sox9 as a direct target for AKT. As Sox10 is a biomarker for triple-negative breast cancers (TNBC), these findings might have major implications in the targeting and treatment of those cancers.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/genética , Animais , Sítios de Ligação , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Transcrição Gênica
11.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118917, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259860

RESUMO

Duchenne's muscular dystrophy (DMD) is a severe muscle wasting disorder characterized by the loss of dystrophin expression, muscle necrosis, inflammation and fibrosis. Ongoing muscle regeneration is impaired by persistent cytokine stress, further decreasing muscle function. Patients with DMD rarely survive beyond their early 20s, with cardiac and respiratory dysfunction being the primary cause of death. Despite an increase in our understanding of disease progression as well as promising preclinical animal models for therapeutic intervention, treatment options for muscular dystrophy remain limited and novel therapeutic targets are required. Many reports suggest that the TGFß signalling pathway is activated in dystrophic muscle and contributes to the pathology of DMD in part by impairing the differentiation of myoblasts into mature myofibers. Here, we show that in vitro knockdown of the Ste20-like kinase, SLK, can partially restore myoblast differentiation downstream of TGFß in a Smad2/3 independent manner. In an mdx model, we demonstrate that SLK is expressed at high levels in regenerating myofibers. Muscle-specific deletion of SLK reduced leukocyte infiltration, increased myogenin and utrophin expression and enhanced differentiation. This was accompanied by resistance to eccentric contraction-induced injury in slow fiber type-enriched soleus muscles. Finally, we found that these effects were partially dependent on the upregulation of p38 signalling. Collectively, these results demonstrate that SLK downregulation can restore some aspects of disease progression in DMD.


Assuntos
Técnicas de Inativação de Genes , Sistema de Sinalização das MAP Quinases/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Miogenina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta/metabolismo
12.
Oncogene ; 39(23): 4592-4602, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393835

RESUMO

HER2 is overexpressed in 20-30% of all breast cancers and is associated with an invasive disease and poor clinical outcome. The Ste20-like kinase (SLK) is activated downstream of HER2/Neu and is required for efficient epithelial-to-mesenchymal transition, cell cycle progression, and migration in the mammary epithelium. Here we show that loss of SLK in a murine model of HER2/Neu-positive breast cancers significantly accelerates tumor onset and decreases overall survival. Transcriptional profiling of SLK knockout HER2/Neu-derived tumor cells revealed a strong induction in the triple-negative breast cancer marker, Sox10, accompanied by an increase in mammary stem/progenitor activity. Similarly, we demonstrate that SLK and Sox10 expression are inversely correlated in patient samples, with the loss of SLK and acquisition of Sox10 marking the triple-negative subtype. Furthermore, pharmacological inhibition of AKT reduces SLK-null tumor growth in vivo and is rescued by ectopic Sox10 expression, suggesting that Sox10 is a critical regulator of tumor growth downstream of SLK/AKT. These findings highlight a role for SLK in negatively regulating HER2-induced mammary tumorigenesis and provide mechanistic insight into the regulation of Sox10 expression in breast cancer.


Assuntos
Transformação Celular Neoplásica/patologia , Proteínas Serina-Treonina Quinases/genética , Receptor ErbB-2/metabolismo , Fatores de Transcrição SOXE/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Transição Epitelial-Mesenquimal/genética , Feminino , Camundongos , Camundongos SCID , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Esferoides Celulares , Neoplasias de Mama Triplo Negativas/genética , Células Tumorais Cultivadas
13.
Oncotarget ; 9(70): 33348-33359, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279965

RESUMO

The Androgen Receptor (AR) has recently garnered a lot of attention as a potential biomarker and therapeutic target in hormone-dependent cancers, including breast cancer. However, several inconsistencies exist within the literature as to which subtypes of breast cancer express AR or whether it can be used to define its own unique subtype. Here, we analyze 1246 invasive breast cancer samples from the Cancer Genome Atlas and show that human breast cancers that have been subtyped based on their HER2, ESR1, or PGR expression contain four clusters of genes that are differentially expressed across all subtypes. We demonstrate that Sox10 is highly expressed in approximately one-third of all HER2/ESR1/PGR-low tumors and is a candidate biomarker of the triple-negative subtype. Although AR expression is acquired in many breast cancer cases, its expression could not define a unique subtype. Despite several reports stating that AR expression is acquired in HER2/ESR1/PGR triple-negative cancers, here we show that a low percentage of these cancers express AR (~20%). In contrast, AR is highly expressed in HER2-positive or ESR1/PGR-positive cancers (> 95%). Although AR expression cannot be used as an independent subtype biomarker, our analysis shows that routine evaluation of AR expression in tumors which express HER2, ESR1 and/or PGR may identify a unique subset of tumors which would benefit from anti-androgen based therapies.

14.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt A): 1590-1597, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327200

RESUMO

We have previously shown that the Ste20-like kinase SLK interacts directly with the LIM domain-binding protein 1, Ldb1. Ldb1 knock down in murine fibroblasts activates SLK and enhances cell migration. To investigate the effect of Ldb1 deletion in ErbB2/HER2-driven tumorigenesis, Ldb1 conditional mice were crossed into MMTV-NIC mice, expressing the Neu oncogene and Cre recombinase from a bi-cistronic transgene. Our results show that Ldb1 is expressed in the mammary epithelium and that deletion of Ldb1 does not impair mammary gland development. Although high levels of Ldb1 can be correlated with poor prognosis in HER2+ breast cancers, Ldb1 ablation does not affect Neu-induced tumor progression in transgenic mice. Surprisingly, Ldb1 deletion did not affect SLK kinase activity in primary tumors or established cell lines. Nevertheless, Ldb1-deficient tumor cells showed enhanced mesenchymal and migratory characteristics in vitro. However, Ldb1-null cells failed to colonize the lungs of wildtype female mice when injected into the tail vein. Together our results show that Ldb1 is dispensable for mammary gland development and Neu-induced tumor progression but required for dissemination at secondary sites. Furthermore, our data also highlight contrasting cell line behaviours observed from in vivo and in vitro assays.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Proteínas com Domínio LIM/genética , Receptor ErbB-2/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Marcação de Genes , Xenoenxertos , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/genética , Receptor ErbB-2/metabolismo
15.
Oncotarget ; 8(58): 98745-98756, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228724

RESUMO

Invasion can be stimulated in vitro using the soluble ligand transforming growth factor-ß (TGFß) to induce a process called epithelial-to-mesenchymal transition (EMT) characterized by cell-cell junction breakdown and an invasive phenotype. We have previously demonstrated a role for Ste20-like kinase SLK cell migration and invasion. Here we show that SLK depletion in NMuMG mammary epithelial cells significantly impairs their TGFß-induced migration and invasion. Immunofluorescence studies show that a fraction of SLK localizes to E-cadherin-positive adherens junction and that SLK impairs the breakdown of cell-cell contacts. We find that SLK-depleted cultures express significantly lower levels of vimentin protein as well as Snai1 and E-cadherin mRNA levels following TGF-ß treatment. Surprisingly, our data show that SLK depletion does not affect the activation and nuclear translocation of Smad3. Furthermore, we show that expression of a dominant negative kinase does not impair tight junction breakdown and rescues Snai1 mRNA expression levels. Together these data suggest that SLK plays a novel role in TGFß-induced EMT, independent of Smads, in a kinase activity-independent manner.

16.
Skelet Muscle ; 7(1): 3, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153048

RESUMO

BACKGROUND: The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. METHODS: In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. RESULTS: We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. CONCLUSIONS: Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation.


Assuntos
Deleção de Genes , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Células Cultivadas , Adesões Focais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Paxilina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
PLoS One ; 11(3): e0150567, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26962872

RESUMO

Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 1 de Adesão Focal/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biochim Biophys Acta ; 1853(7): 1683-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25882817

RESUMO

The Ste20-like kinase SLK plays a pivotal role in cell migration and focal adhesion turnover and is regulated by the LIM domain-binding proteins Ldb1 and Ldb2. These adapter proteins have been demonstrated to interact with LMO4 in the organization of transcriptional complexes. Therefore, we have assessed the ability of LMO4 to also interact and regulate SLK activity. Our data show that LMO4 can directly bind to SLK and activate its kinase activity in vitro and in vivo. LMO4 can be co-precipitated with SLK following the induction of cell migration by scratch wounding and Cre-mediated deletion of LMO4 in conditional LMO4(fl/fl) fibroblasts inhibits cell migration and SLK activation. Deletion of LMO4 impairs Ldb1 and SLK recruitment to the leading edge of migrating cells. Supporting this, Src/Yes/Fyn-deficient cells (SYF) expressing very low levels of LMO4 do not recruit SLK to the leading edge. Re-expression of wildtype Myc-LMO4 in SYF cells, but not a mutant version, restores SLK localization and kinase activity. Overall, our data suggest that activation of SLK by haptotactic signals requires its recruitment to the leading edge by LMO4 in a Src-dependent manner. Furthermore, this establishes a novel cytosolic role for the transcriptional co-activator LMO4.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Fibroblastos/citologia , Fibroblastos/enzimologia , Proteínas com Domínio LIM/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudópodes/metabolismo , Quinases da Família src/metabolismo , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Feminino , Deleção de Genes , Células HEK293 , Humanos , Proteínas com Domínio LIM/química , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Frações Subcelulares/metabolismo
19.
Breast Cancer Res ; 17: 7, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592291

RESUMO

INTRODUCTION: Periostin (Postn) is a secreted cell adhesion protein that activates signaling pathways to promote cancer cell survival, angiogenesis, invasion, and metastasis. Interestingly, Postn is frequently overexpressed in numerous human cancers, including breast, lung, colon, pancreatic, and ovarian cancer. METHODS: Using transgenic mice expressing the Neu oncogene in the mammary epithelium crossed into Postn-deficient animals, we have assessed the effect of Postn gene deletion on Neu-driven mammary tumorigenesis. RESULTS: Although Postn is exclusively expressed in the stromal fibroblasts of the mammary gland, Postn deletion does not affect mammary gland outgrowth during development or pregnancy. Furthermore, we find that loss of Postn in the mammary epithelium does not alter breast tumor initiation or growth in mouse mammary tumor virus (MMTV)-Neu expressing mice but results in an apocrine-like tumor phenotype. Surprisingly, we find that tumors derived from Postn-null animals express low levels of Notch protein and Hey1 mRNA but increased expression of androgen receptor (AR) and AR target genes. We show that tumor cells derived from wild-type animals do not proliferate when transplanted in a Postn-null environment but that this growth defect is rescued by the overexpression of active Notch or the AR target gene prolactin-induced protein (PIP/GCDFP-15). CONCLUSIONS: Together our data suggest that loss of Postn in an ErbB2/Neu/HER2 overexpression model results in apocrine-like tumors that activate an AR-dependent pathway. This may have important implications for the treatment of breast cancers involving the therapeutic targeting of periostin or Notch signaling.


Assuntos
Moléculas de Adesão Celular/deficiência , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor Notch1/metabolismo , Receptores Androgênicos/metabolismo , Neoplasias das Glândulas Sudoríparas/genética , Neoplasias das Glândulas Sudoríparas/metabolismo , Animais , Glândulas Apócrinas/metabolismo , Glândulas Apócrinas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Genótipo , Humanos , Imuno-Histoquímica , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Neoplasias das Glândulas Sudoríparas/mortalidade , Neoplasias das Glândulas Sudoríparas/patologia , Carga Tumoral
20.
Dev Dyn ; 243(5): 640-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24868594

RESUMO

BACKGROUND: Over the past decade, the Ste20-like kinase SLK, has been implicated in several signaling processes. SLK repression has been shown to impair cell cycle kinetics and inhibit FAK-mediated cell migration. Here, using a gene trapped allele, we have generated mice expressing a truncated form of the SLK kinase. RESULTS: Our results show that an SLK-LacZ fusion protein is expressed in embryonic stem cells and in embryos throughout development. We find that the SLK-LacZ fusion protein is less efficient at phosphorylating substrates resulting in reduced cell proliferation within the embryos and angiogenic defects in the placentae of the homozygous mutant animals at embryonic day (E) 12.5. This results in marked developmental defects and apoptotic lesions in the embryos by E14.5. CONCLUSIONS: Homozygotes expressing the SLK-LacZ fusion protein present with an embryonic lethal phenotype occurring between E12.5 and E14.5. Overall, we demonstrate a requirement for SLK kinase activity in the developing embryo and placenta.


Assuntos
Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/fisiologia , Placenta/enzimologia , Proteínas da Gravidez/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Embrião de Mamíferos/citologia , Feminino , Camundongos , Camundongos Transgênicos , Placenta/citologia , Gravidez , Proteínas da Gravidez/genética , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...