Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35564186

RESUMO

This study reports a simple new technique for the preparation of novel hexagonal-shaped mixed metal oxides (MMO) nanorods using Zn/Al-layered double hydroxide (LDH) as a precursor for dye-sensitized solar cell (DSSC) application. The effect of the Zn to Al molar ratio demonstrated a sound correlation between the obtained nanorods' diameter and the fabricated DSSCs efficiency. Additionally, the optical behavior of the fabricated MMO film as well as the absorption enhancement due to the utilized dye are also demonstrated; a cut-off phenomenon at around 376 nm corresponds to the attained hexagonal nanorods. The open-circuit voltage augmented noticeably from 0.6 to 0.64 V alongside an increase in the diameter of nanorods from 64 to 80 nm. The results indicated that an increment in the diameter of the nanorods is desirable due to the enhanced surface area through which a higher amount of dye N719 was loaded (0.35 mM/cm2). This, in turn, expedited the transport of electrons within the MMO matrix resulting in an advanced short-circuit current. Of the devices fabricated, ZA-8 exhibited the highest fill factor and efficiency of 0.37% and 0.69%, respectively, because of its boosted short-circuit current and open-circuit voltage.

2.
Sci Rep ; 11(1): 15768, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344974

RESUMO

The miniaturization of electronic devices and the consequent decrease in the distance between conductive lines have increased the risk of short circuit failure due to electrochemical migration (ECM). The presence of ionic contaminants affects the ECM process. This work systematically investigates the ECM of tin (Sn) in the presence of bromide ions (Br-) in the range of 10-6 M to 1.0 M. Water drop test (WDT) was conducted in the two-probe semiconductor characterization system under an optical microscope as an in-situ observation. Polarization test was carried out to study the correlation between the corrosion properties of Sn and its ECM behaviour. The products of ECM were characterized by scanning electron microscope coupled with an energy dispersive X-rays spectrometer (SEM/EDX) and X-ray photoelectron spectrometer (XPS). The results confirm that the rate of anodic dissolution of Sn monotonously increases with the Br- concentration. However, the probability of ECM failure follows a normal distribution initially, but later increases with the Br- concentration. The main products of the ECM reactions are identified as Sn dendrites and tin hydroxide precipitates. The mechanisms of the ECM process of Sn in the presence of Br- are also suggested.

3.
Sci Rep ; 10(1): 4828, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179797

RESUMO

This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.

4.
Sci Rep ; 6: 29328, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381946

RESUMO

Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where 'x' defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ∆T (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm(-2); 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.

5.
Sensors (Basel) ; 14(8): 14586-600, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25116903

RESUMO

An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ~5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures.


Assuntos
Etanol/química , Gases/química , Nanoestruturas/química , Compostos de Estanho/química , Óxido de Zinco/química , Desenho de Equipamento/métodos , Microscopia Eletrônica de Varredura/métodos , Nanofios/química , Tamanho da Partícula , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...