Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mob DNA ; 3(1): 1, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22277150

RESUMO

BACKGROUND: Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. RESULTS: In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. CONCLUSIONS: Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences.

2.
Mob DNA ; 2: 14, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-22032517

RESUMO

BACKGROUND: The two-step transposition pathway of insertion sequences of the IS3 family, and several other families, involves first the formation of a branched figure-of-eight (F-8) structure by an asymmetric single strand cleavage at one optional donor end and joining to the flanking host DNA near the target end. Its conversion to a double stranded minicircle precedes the second insertional step, where both ends function as donors. In IS2, the left end which lacks donor function in Step I acquires it in Step II. The assembly of two intrinsically different protein-DNA complexes in these F-8 generating elements has been intuitively proposed, but a barrier to testing this hypothesis has been the difficulty of isolating a full length, soluble and active transposase that creates fully formed synaptic complexes in vitro with protein bound to both binding and catalytic domains of the ends. We address here a solution to expressing, purifying and structurally analyzing such a protein. RESULTS: A soluble and active IS2 transposase derivative with GFP fused to its C-terminus functions as efficiently as the native protein in in vivo transposition assays. In vitro electrophoretic mobility shift assay data show that the partially purified protein prepared under native conditions binds very efficiently to cognate DNA, utilizing both N- and C-terminal residues. As a precursor to biophysical analyses of these complexes, a fluorescence-based random mutagenesis protocol was developed that enabled a structure-function analysis of the protein with good resolution at the secondary structure level. The results extend previous structure-function work on IS3 family transposases, identifying the binding domain as a three helix H + HTH bundle and explaining the function of an atypical leucine zipper-like motif in IS2. In addition gain- and loss-of-function mutations in the catalytic active site define its role in regional and global binding and identify functional signatures that are common to the three dimensional catalytic core motif of the retroviral integrase superfamily. CONCLUSIONS: Intractably insoluble transposases, such as the IS2 transposase, prepared by solubilization protocols are often refractory to whole protein structure-function studies. The results described here have validated the use of GFP-tagging and fluorescence-based random mutagenesis in overcoming this limitation at the secondary structure level.

3.
J Bacteriol ; 186(3): 858-65, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14729714

RESUMO

Cut-and-paste (simple insertion) and replicative transposition pathways are the two classical paradigms by which transposable elements are mobilized. A novel variation of cut and paste, a two-step transposition cycle, has recently been proposed for insertion sequences of the IS3 family. In IS2 this variation involves the formation of a circular, putative transposition intermediate (the minicircle) in the first step. Two aspects of the minicircle may involve its proposed role in the second step (integration into the target). The first is the presence of a highly reactive junction formed by the two abutted ends of the element. The second is the assembly at the minicircle junction of a strong hybrid promoter which generates higher levels of transposase. In this report we show that IS2 possesses a highly reactive minicircle junction at which a strong promoter is assembled and that the promoter is needed for the efficient completion of the pathway. We show that the sequence diversions which characterize the imperfect inverted repeats or ends of this element have evolved specifically to permit the formation and optimal function of this promoter. While these sequence diversions eliminate catalytic activity of the left end (IRL) in the linear element, sufficient sequence information essential for catalysis is retained by the IRL in the context of the minicircle junction. These data confirm that the minicircle is an essential intermediate in the two-step transposition pathway of IS2.


Assuntos
Elementos de DNA Transponíveis , Regiões Promotoras Genéticas , Sequência de Bases , DNA Circular/metabolismo , Dados de Sequência Molecular , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...