Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran Biomed J ; 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38946021

RESUMO

Background: The growing threat of antibiotic resistance and Klebsiella pneumoniae infection in healthcare settings highlights the urgent need for innovative solutions, such as vaccines, to address these challenges. This study sought to assess the potential of using K. pneumoniae OmpA as a vaccine candidate through both in silico and in vivo analyses. Methods: The study examined the OmpA protein sequence for subcellular localization, antigenicity, allergenicity, similarity to the human proteome, physicochemical properties, B-cell epitopes, MHC binding sites, tertiary structure predictions, molecular docking, and immune response simulations. The ompA gene was cloned into the pET-28a (+) vector, expressed, purified and confirmed using Western blotting analysis. IgG levels in the serum of the immunized mice were measured using ELISA with dilutions ranging from 1:100 to 1:6400, targeting rOmpA and K. pneumoniae ATCC 13883. The sensitivity and specificity of the ELISA method were also assessed. Results: The bioinformatics analysis identified rOmpA as a promising vaccine candidate. The immunized group demonstrated significant production of specific total IgG antibodies against rOmpA and K. pneumoniae ATCC1 13883, as compared to the control group (p < 0.0001). The titers of antibodies produced in response to bacterial exposure did not show any significant difference when compared to the anti-rOmpA antibodies (p > 0.05). The ELISA test sensitivity was 1:3200, and the antibodies in the serum could accurately recognize K. pneumoniae cells. Conclusion: This study is a significant advancement in the development of a potential vaccine against K. pneumoniae that relies on OmpA. Nevertheless, additional experimental analyses are required.

2.
Int J Pharm ; 654: 123961, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432452

RESUMO

The objective of this study was to assess the effectiveness of polydopamine nanoparticles (PDANPs) as a delivery system for intranasal antigen administration to prevent Acinetobacter baumannii (A. baumannii)-associated pneumonia. In the in vitro phase, the conserved outer membrane protein 22 (Omp22)-encoding gene of A. baumannii was cloned, expressed, and purified, resulting in the production of recombinant Omp22 (rOmp22), which was verified using western blot. PDANPs were synthesized using dopamine monomers and loaded with rOmp22 through physical adsorption. The rOmp22-loaded PDANPs were characterized in terms of size, size distribution, zeta potential, field emission scanning electron microscopy (FESEM), loading capacity, Fourier transform infrared spectroscopy (FTIR), release profile, and cytotoxicity. In the in vivo phase, the adjuvant effect of rOmp22-loaded PDANPs was evaluated in terms of eliciting immune responses, including humoral and cytokine levels (IL-4, IL-17, and IFN-γ), as well as protection challenge. The rOmp22-loaded PDANPs were spherical with a size of 205 nm, a zeta potential of -14 mV, and a loading capacity of approximately 35.7 %. The released rOmp22 from nontoxic rOmp22-loaded PDANPs over 20 days was approximately 41.5 %, with preserved rOmp22 integrity. The IgG2a/IgG1 ratio and IFN-γ levels were significantly higher in immunized mice with rOmp22-loaded-PDANPs than in rOmp22-alum, naive Omp22, and control groups. Furthermore, rOmp22-loaded PDANPs induced effective protection against infection in the experimental challenge and showed more normal structures in the lung histopathology assay. The results of this study suggest the potential of PDANPs as a nano-adjuvant for inducing strong immune responses to combat A. baumannii.


Assuntos
Acinetobacter baumannii , Indóis , Pneumonia , Polímeros , Animais , Camundongos , Vacinas Bacterianas , Adjuvantes Imunológicos , Imunidade , Adjuvantes Farmacêuticos , Imunoglobulina G
3.
Int Immunopharmacol ; 125(Pt B): 111171, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948863

RESUMO

The present study describes the design and fabrication of a novel vaccine candidate based on the outer membrane protein A (rOmpA) from Klebsiella pneumoniae (K. pneumoniae) encapsulated in silk fibroin-sodium alginate nanoparticles (SF-SANPs) against K. pneumoniae-mediated pneumonia. The physicochemical properties, toxicity, release profile, and in vivo potency of SF-SANPs encapsulated with rOmpA were evaluated. The spherical nano vaccine was created with an average particle size of 160 nm and an encapsulation efficiency of 80 %. Antigen release from SF-SANPs was 40 % after 22 days release assay. The SF-SANPs showed a zeta potential of -24.8 mV and had no toxic effect on the L929 cells in vitro. It was found that SF-SANPs in the vaccine formulation promoted systemic and mucosal antibodies and also stimulated cytokine responses, inducing both humoral (Th2) and cellular (Th1) immune responses, with a Th1-polarized response. The vaccine candidate was effective in protecting the mice lung against experimental pneumonia and reducing inflammation. These findings suggest that the rOmpA-based vaccine encapsulated in SF-SANPs could be a promising strategy for preventing pneumonia caused by K. pneumoniae.


Assuntos
Fibroínas , Nanopartículas , Pneumonia , Vacinas , Animais , Camundongos , Klebsiella pneumoniae , Alginatos
4.
Future Microbiol ; 18: 1171-1183, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882782

RESUMO

Aims: To determine the antibiotic resistance and genetic diversity of Pseudomonas aeruginosa isolates. Methods: The antibiotic resistance, genetic diversity and the conjugate transformation among Pseudomonas aeruginosa collected from patients with urinary tract infection in Tehran, Iran, was investigated. Results: Antibiotic resistance against cefepime was seen in 51.74% of the isolates, followed by amikacin (47.76%). blaOXA-10 and blaVIM were the most prevalent extended-spectrum ß-lactamase and metallo-ß-lactamases genes, respectively. Five clusters (C1-C5) were obtained by pulse field gel electrophoresis and multilocus sequence typing revealed two strain types, ST235 and ST664. Conjugation detected blaOXA-48 and blaNDM genes were transferred to Escherichia coli K12. Conclusion: The resistance of P. aeruginosa to antibiotics is increasing, which highlights the need to determine the resistance patterns to design better treatment strategies.


Assuntos
Infecções por Pseudomonas , Infecções Urinárias , Humanos , Pseudomonas aeruginosa , Irã (Geográfico)/epidemiologia , Infecções por Pseudomonas/epidemiologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/análise , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana Múltipla/genética , Variação Genética
5.
J Basic Microbiol ; 63(9): 1007-1015, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36086811

RESUMO

The aim of this study was to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on the expression of genes involved in toxin-antitoxin (TA) systems in multidrug-resistant (MDR) Acinetobacter baumannii. Seventy clinical isolates of A. baumannii were collected from variuos clinical samples. Antimicrobial susceptibility test was determined by disk diffusion. Type II TA system-related genes including GNAT, XRE-like, hipA, hipB, hicA, hicB were screened using polymerase chain reaction (PCR). ZnO-NPs prepared and characterized by field emission scanning electron microscopy and X-ray diffraction. MIC of ZnO-NPs of A. baumannii isolates was performed using the microdilution method. The expression of type II TA systems-related genes were assessed with and without exposure to ZnO-NPs using real-time PCR. The highest rate of resistance and sensitivity was observed against cefepime (77.14%), and ampicillin/sulbactam (42.85%), respectively. All A. baumannii isolates were considered as MDR. In this study, three TA loci were identified for A. baumannii including GNAT/XRE-like, HicA/HicB, and HipA/HipB and their prevalence was 100%, 42%, and 27.1%, respectively. There was no significant relationship between the prevalence of these systems and the origin of A. baumannii. Our data showed significant correlations between the presence of HicA/HicB system and resistance to ceftazidime, meropenem, imipenem, and cefepime (p < 0.05), and the presence of HipA/HipB system and resistance to ceftazidime, meropenem, imipenem, and cefepime (p < 0.05). In presence of ZnO-NPs, the expression of all studied genes decreased. GNAT and hicB showed the highest and lowest expression changes by 2.4 folds (p < 0.001) and 1.3 folds (p < 0.05), respectively. This study demonstrates the promising potential of nanoparticles to impact the expression of the genes involved in TA Systems. So, the application of ZnO-NPs may be helpful to design target-based strategies towards MDRs pathogens for empowered clinical applications by microbiologists and nanotechnologists.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Nanopartículas , Sistemas Toxina-Antitoxina , Óxido de Zinco , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Óxido de Zinco/farmacologia , Ceftazidima/metabolismo , Ceftazidima/farmacologia , Cefepima/metabolismo , Cefepima/farmacologia , Meropeném/metabolismo , Meropeném/farmacologia , Imipenem/metabolismo , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
6.
Appl Biochem Biotechnol ; 195(1): 107-124, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36053401

RESUMO

Human monocytotropic ehrlichiosis is an emerging tick-borne infection caused by the obligate intracellular pathogen, Ehrlichia chaffeensis. The non-specific symptoms can range from a self-limiting fever to a fatal septic-like syndrome and may be misdiagnosed. The limited treatment choices including doxycycline are effective only in the initiation phase of the infection. It seems that novel therapeutic targets and new vaccine strategies could be effective to control this pathogen. This study is comprised of two major phases. First, the common proteins retrieved through subtractive analysis and potential drug targets were evaluated by subcellular localization, homology prediction, metabolic pathways, druggability, essentiality, protein-protein interaction networks, and protein data bank availability. In the second phase, surface-exposed proteins were assessed based on antigenicity, allergenicity, physiochemical properties, B cell and T cell epitopes, conserved domains, and protein-protein interaction networks. A multi-epitope vaccine was designed and characterized using molecular dockings and immune simulation analysis. Six proteins including WP_011452818.1, WP_011452723.1, WP_006010413.1, WP_006010278.1, WP_011452938.1, and WP_006010644.1 were detected. They belong to unique metabolic pathways of E. chaffeensis that are considered as new essential drug targets. Based on the reverse vaccinology, WP_011452702.1, WP_044193405.1, WP_044170604.1, and WP_006010191.1 proteins were potential vaccine candidates. Finally, four B cell epitopes, including SINNQDRNC, FESVSSYNI, SGKKEISVQSN, and QSSAKRKST, were used to generate the multi-epitope vaccine based on LCL platform. The vaccine showed strong interactions with toll-like receptors and acceptable immune-reactivity by immune simulation analysis. The findings of this study may represent a turning point in developing an effective drug and vaccine against E. chaffeensis. However, further experimental analyses have remained.


Assuntos
Ehrlichia chaffeensis , Vacinas , Humanos , Ehrlichia chaffeensis/genética , Vacinologia , Epitopos de Linfócito T , Epitopos de Linfócito B
7.
Acta Microbiol Immunol Hung ; 69(4): 303-313, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36112491

RESUMO

In the present study a total of 200 Klebsiella pneumoniae isolates were collected from patients with urinary tract infections (UTIs) in Tehran, Iran. Antibiotic resistance was determined by disk diffusion and broth dilution methods. Detection of extended-spectrum ß-lactamases (ESBLs) and AmpCs was performed using phenotypic tests. Polymerase chain reaction (PCR) was applied to detect the ESBL, AmpC, and integron genes. Analysis of AmpC and cassette arrays of integron genes was performed using DNA sequencing. Plasmids were analyzed by PCR-based replicon typing and conjugation. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were applied to explore the genomic relatedness among the isolates. The highest levels of resistance were observed against ampicillin (100%), followed by piperacillin (57.5%), ceftazidime (46%), trimethoprim/sulfamethoxazole (44%), ciprofloxacin (32.5%), and imipenem (19%). Approximately, 66.5% of isolates harbored at least one of the beta-lactamase genes (blaTEM, blaSHV, blaCTX-M, and blaOXA-1). In addition, 22.5% of isolates carried at least one of the AmpC genes including blaDHA and blaCIT. Integron class I was the most prevalent integron among resistant isolates. According to the results of replicon typing, IncFII, IncL/M, and IncA/C were the most frequent replicons, respectively. All selected isolates were able to transfer blaCTX-M, also two isolates transferred the blaDHA-1 gene to Escherichia coli K12 through conjugation. Finally, 21 isolates were categorized into 4 pulsotypes and 11 unique clusters in PFGE. MLST identified ST147 and ST11 sequence types but ST147 was the most prevalent in the current study.


Assuntos
Klebsiella pneumoniae , Infecções Urinárias , Humanos , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Irã (Geográfico)/epidemiologia
8.
Microb Pathog ; 164: 105425, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114352

RESUMO

The emergence of multidrug-resistant Corynebacterium jeikeium has limited treatment options and resulted in the inability to treat C. jeikeium infections, especially in immunocompromised patients. To our knowledge, no studies have been conducted to evaluate C. jeikeium antigens for vaccine development. Given the lack of effective treatments against C. jeikeium, this study aimed to identify potential immunogenic targets against C. jeikeium as a nosocomial pathogen using a reverse vaccinology approach. To achieve this goal, we performed several immuninformatics analyses, including antigenicity, allergenicity, PSI-BLAST to the human proteome, physiochemical properties, B-cell and T-cell epitopes, molecular docking, and immunosimulation. In addition, quartile scoring and prevalence assessment were used to select the most abundant immunogenic targets in different C. jeikeium strains. Finally, protein-protein interactions were performed and the multi-epitope vaccine was developed. Five putative immunogenic targets were presented as short-listed proteins in this study, including three enzymatic proteins (WP_011273969.1, WP_041626322.1, and WP_005292204.1), one protein with DUF3235 domain (WP_011273103.1), and one hypothetical protein (WP_005293648.1). Four linear B-cell epitopes of putative immunogenic targets, including WP_011273103.1 (LNSKPTPRNAAAKPKAK), WP_011273969.1 (GEGAQGSAAPADAQATANE), WP_005292204.1 (ASVSAAQKADGIAP), and WP_041626322.1 (YSKKVAEEMGVG) were selected and inserted into the mutant TbpB C-lobe protein. This platform can effectively present multiple epitopes to the immune system. However, experimental in vitro and in vivo analysis is required to confirm the safety, immunoreactivity, and efficacy of these putative immunogenic targets.


Assuntos
Vacinas , Vacinologia , Biologia Computacional , Corynebacterium , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas/genética , Vacinologia/métodos
9.
Germs ; 7(4): 171-177, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29264354

RESUMO

BACKGROUND: Microbial superantigens might initiate or exacerbate autoimmune responses against particular tissues, organs or systems. This study aimed to examine the prevalence of sea, seb, sec, sed, and tsst-1 genes of Staphylococcus aureus in nasal carriage and their association with multiple sclerosis (MS). METHODS: Nasal swabs were collected from 150 MS patients and 150 healthy individuals (control group) to isolate S. aureus and investigate their superantigen genes (sea, seb, sec, sed and tsst-1) using PCR. RESULTS: A total of 300 participants were enrolled in the study, matched for age and gender (150 patients in the MS group and 150 in the control group). The prevalence of S. aureus colonization in MS patients and control groups was 42% and 23.3%, respectively. There was a statistically significant association between S. aureus colonization and MS disease (p<0.001; odds ratio 2.4; 95% confidence interval 1.4-3.9). No significant association was observed between the presence of S. aureus harboring sea, seb, sec, sed and tsst-1 genes with MS disease. CONCLUSION: The rate of S. aureus nasal carriage is higher in patients with MS. Our study's results suggest that further investigation into whether there is a connection between MS and nasal exposure to staphylococcal superantigens is warranted.

10.
Iran J Public Health ; 46(3): 351-356, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435821

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant challenge to the burn patient. The implementation of proper monitoring programs and prompt identification of epidemic MRSA strains are critical to consequently control and eradicate potential outbreaks. This study aimed to define the genetic relatedness of MRSA strains isolated from burn patients by analyzing the large fragments of DNA. METHODS: In this cross-sectional study, 126 pus/wound swabs from skin and soft tissue infections (SSTIs) were collected from inpatients of Shahid Motahari Burn Center (Tehran, Iran) in 2013. Then, molecular typing of MRSA was achieved by Pulsed-Field Gel Electrophoresis (PFGE). RESULTS: The PFGE analysis of MRSA indicated 31 single types and 5 common types. There was a significant diversity in the chromosomal digestion pattern of the MRSA strains explained by the acquisition of MRSA from various sources. CONCLUSION: The permanent import of novel types of MRSA strains despite the rigorous infection control measures carried out within the center. The importance of PFGE in understanding the epidemiology of MRSA may serve as a basis for the development of rational control strategies.

11.
Iran J Microbiol ; 9(6): 324-330, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29487730

RESUMO

BACKGROUND AND OBJECTIVES: Enterococcus faecalis is the leading cause of several human infections. This opportunist pathogen expresses surface components that have various functions in the infection process including bacterial adhesion, lytic activity, and induction of host immune responses. EF0737, a novel cell wall associated protein, may play an important role in pathogenesis of E. faecalis, based on our experiments. This study was conducted to clone and express EF0737 and demonstrate its interaction with biotinylated plasma proteins and patients' sera. MATERIALS AND METHODS: The full length of ef0737 gene was cloned in pTZ57R/T cloning vector and subcloned in pET21a expression vector. Recombinant protein expressed in Escherichia coli Origami (DE3) was confirmed by western blot technique, using anti-His tagged monoclonal antibodies, and was then purified. Interaction of the recombinant protein with plasma proteins and patients' sera were examined by western blot. RESULTS: The ef0737 gene was successfully cloned and expressed in E. coli Origami host. Binding activity was observed between the purified EF0737 recombinant protein and fibrinogen and mucin among other plasma proteins. Moreover, reaction was also observed between the purified product and sera obtained from patients diagnosed with E. faecalis infection. CONCLUSION: The observed reactions between EF0737 and fibrinogen, mucin and patients' sera suggest that EF0737 may play important role in pathogenesis of infections caused by E. faecalis. However, more comprehensive characterization of this novel protein may provide better understanding of host pathogen interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...