Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(2): 423-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889430

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is a major global health problem, with over 38 million people infected worldwide. Current anti-HIV-1 drugs are limited in their ability to prevent the virus from replicating inside host cells, making them less effective as preventive measures. In contrast, viral inhibitors that inactivate the virus before it can bind to a host cell have great potential as drugs. In this study, we aimed to design mutant peptides that could block the interaction between gp120 and the CD4 receptor on host cells, thus preventing HIV-1 infection. We designed a 20-amino-acid peptide that mimicked the amino acids of the CD4 binding site and docked it to gp120. Molecular dynamics simulations were performed to calculate the energy of MMPBSA (Poisson-Boltzmann Surface Area) for each residue of the peptide, and unfavorable energy residues were identified as potential mutation points. Using MAESTRO (Multi AgEnt STability pRedictiOn), we measured ΔΔG (change in the change in Gibbs free energy) for mutations and generated a library of 240 mutated peptides using OSPREY software. The peptides were then screened for allergenicity and binding affinity. Finally, molecular dynamics simulations (via GROMACS 2020.2) and control docking (via HADDOCK 2.4) were used to evaluate the ability of four selected peptides to inhibit HIV-1 infection. Three peptides, P3 (AHRQIRQWFLTRGPNRSLWQ), P4 (VHRQIRQWFLTRGPNRSLWQ), and P9 (AHRQIRQMFLTRGPNRSLWQ), showed practical and potential as HIV inhibitors, based on their binding affinity and ability to inhibit infection. These peptides have the ability to inactivate the virus before it can bind to a host cell, thus representing a promising approach to HIV-1 prevention. Our findings suggest that mutant peptides designed to block the interaction between gp120 and the CD4 receptor have potential as HIV-1 inhibitors. These peptides could be used as preventive measures against HIV-1 transmission, and further research is needed to evaluate their safety and efficacy in clinical settings.


Assuntos
HIV-1 , Humanos , HIV-1/genética , HIV-1/metabolismo , Antígenos CD4/genética , Antígenos CD4/química , Antígenos CD4/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Sítios de Ligação , Mutação/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/farmacologia
2.
Phytomedicine ; 111: 154648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681052

RESUMO

BACKGROUND: The high number of mutations and consequent structure modifications in a Receptor-Binding Domain (RBD) of the spike protein of the Omicron variant of SARS-CoV-2 increased concerns about evading neutralization by antibodies induced by previous infection or vaccination. Thus, developing novel drugs with potent inhibitory activity can be considered an alternative for treating this highly transmissible variant. Considering that Urtica dioica agglutinin (UDA) displays antiviral activity against SARS-CoV-2, the potency of this lectin to inhibit the Receptor Binding Domain of the Omicron variant (RBDOmic) was examined in this study. PURPOSE: This study examines how UDA inhibits the Omicron variant of SARS-CoV-2 by blocking its RBD, using a combination of in silico and experimental methods. METHODS: To investigate the interaction between UDA and RBDOmic, the CLUSPRO 2.0 web server was used to dock the RBDOmic-UDA complex, and molecular dynamics simulations were performed by the Gromacs 2020.2 software to confirm the stability of the selected docked complex. Finally, the binding affinity (ΔG) of the simulation was calculated using MM-PBSA. In addition, ELISA and Western blot tests were used to examine UDA's binding to RBDOmic. RESULTS: Based on the docking results, UDA forms five hydrogen bonds with the RBDOmic active site, which contains mutated residues Tyr501, Arg498, Arg493, and His505. According to MD simulations, the UDA-RBDOmic complex is stable over 100 ns, and its average binding energy during the simulation is -87.201 kJ/mol. Also, the ELISA test showed that UDA significantly binds to RBDOmic, and by increasing the concentration of UDA protein, the attachment to RBDOmic became stronger. In Western blotting, RBDOmic was able to attach to and detect UDA. CONCLUSION: This study indicates that UDA interaction with RBDOmic prevents virus attachment to Angiotensin-converting enzyme 2 (ACE2) and, therefore, its entry into the host cell. Altogether, UDA exhibited a significant suppression effect on the Omicron variant and can be considered a new candidate to improve protection against severe infection of this variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Mutação
3.
PLoS One ; 17(7): e0268156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901082

RESUMO

Despite using effective drugs and vaccines for Covid 19, due to some limitations of current strategies and the high rate of coronavirus mutation, the development of medicines with effective inhibitory activity against this infection is essential. The SARS-CoV-2 enters the cell by attaching its receptor-binding domain (RBD) of Spike to angiotensin-converting enzyme-2 (ACE2). According to previous studies, the natural peptide Urtica dioica agglutinin (UDA) exhibited an antiviral effect on SARS-CoV, but its mechanism has not precisely been elucidated. Here, we studied the interaction between UDA and RBD of Spike protein of SARS-CoV-2. So, protein-protein docking of RBD-UDA was performed using Cluspro 2.0. To further confirm the stability of the complex, the RBD-UDA docked complex with higher binding affinity was studied using Molecular Dynamic simulation (via Gromacs 2020.2), and MM-PBSA calculated the binding free energy of the system. In addition, ELISA assay was used to examine the binding of UDA with RBD protein. Results were compared to ELISA of RBD-bound samples of convalescent serum IgG (from donors who recovered from Covid 19). Finally, the toxicity of UDA is assessed by using MTT assay. The docking results show UDA binds to the RBD binding site. MD simulation illustrates the UDA-RBD complex is stable during 100 ns of simulation, and the average binding energy was calculated to be -47.505 kJ/mol. ELISA and, MTT results show that UDA binds to RBD like IgG-RBD binding and may be safe in human cells. Data presented here indicate UDA interaction with S-protein inhibits the binding sites of RBD, it can prevent the virus from attaching to ACE2 and entering the host cell.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Imunização Passiva , Imunoglobulina G/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidil Dipeptidase A/metabolismo , Lectinas de Plantas , Proteínas de Plantas/metabolismo , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...