Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 8(9): 2673-2681, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32254844

RESUMO

Dedicated chemistries for on-demand capture and release of biomolecules at the solid-liquid interface are required for applications in drug delivery, for the synthesis of switchable surfaces used in analytical devices and for the assembly of next-generation biomaterials with complex architectures and functions. Here we report the engineering of a binary self-assembling polypeptide system for reversible protein capture, immobilisation and controlled thermo-responsive release from a solid surface. The first element of the binary system is a universal protein substrate immobilised on a solid surface. This protein is bio-inspired by the neuronal SNAP25, which is the protein involved in the docking and fusion of synaptic vesicles to the synaptic membrane. The second element is an artificial chimeric protein engineered to include distinct domains from three different proteins: Syntaxin, VAMP and SNAP25. These native proteins constitute the machinery dedicated to vesicle trafficking in eukaryotes. We removed approximately 70% of native protein sequence from these proteins and constructed a protein chimera capable of high affinity interaction and self-assembly with immobilised substrate. The interaction of the two parts of the engineered protein complex is strong but fully-reversible and therefore the chimera can be recombinantly fused as a tag to a protein of interest, to allow spontaneous assembly and stimuli-sensitive release from the surface upon heating at a predetermined temperature. Two thermo-responsive tags are reported: the first presents remarkable thermal stability with melting temperature of the order of 80 °C; the second disassembles at a substantially lower temperature of about 45 °C. The latter is a promising candidate for remote-controlled localised delivery of therapeutic proteins, as physiologically tolerable local increase of temperatures in the 40-45 °C range can be achieved using magnetic fields, infra-red light or focused ultrasound. Importantly, these two novel polypeptides provide a broader blueprint for the engineering of future functional proteins with predictable folding and response to external stimuli.


Assuntos
Proteínas Imobilizadas , Peptídeos , Engenharia de Proteínas , Proteínas de Transporte Vesicular , Temperatura
2.
Methods Mol Biol ; 2118: 227-234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32152983

RESUMO

Conjugation of proteins to gold nanoparticles (AuNP), silver nanoparticles (AgNP), or other metal nanoparticles (NPs) can often be achieved using passive adsorption. Although such an approach is simple and effective, there is usually no control over the orientation of the protein and denaturation due to close contact with the metal surface. The method described here makes use of adapter proteins which have the ability to adsorb to the NP surface in an oriented and stable way and at the same time enable straightforward attachment to other proteins of interest.


Assuntos
Glutationa Transferase/química , Ouro/química , Prata/química , Adsorção , Eletroforese em Gel de Poliacrilamida , Nanopartículas Metálicas , Modelos Moleculares , Desnaturação Proteica
3.
Nat Commun ; 9(1): 1489, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662234

RESUMO

Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold-sulfur bonds (Au-S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond.


Assuntos
Glutationa Transferase/química , Ouro/química , Proteínas de Helminto/química , Nanopartículas Metálicas/química , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Cinética , Simulação de Dinâmica Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schistosoma japonicum/química , Streptococcus pyogenes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...