Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Vis Exp ; (192)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912526

RESUMO

Assessing cell-type-specific epigenomic and transcriptomic changes are key to understanding ovarian aging. To this end, the optimization of the translating ribosome affinity purification (TRAP) method and the isolation of nuclei tagged in specific cell types (INTACT) method was performed for the subsequent paired interrogation of the cell-specific ovarian transcriptome and epigenome using a novel transgenic NuTRAP mouse model. The expression of the NuTRAP allele is under the control of a floxed STOP cassette and can be targeted to specific ovarian cell types using promoter-specific Cre lines. Since recent studies have implicated ovarian stromal cells in driving premature aging phenotypes, the NuTRAP expression system was targeted to stromal cells using a Cyp17a1-Cre driver. The induction of the NuTRAP construct was specific to ovarian stromal fibroblasts, and sufficient DNA and RNA for sequencing studies were obtained from a single ovary. The NuTRAP model and methods presented here can be used to study any ovarian cell type with an available Cre line.


Assuntos
Epigenoma , Transcriptoma , Feminino , Camundongos , Animais , Camundongos Transgênicos , Perfilação da Expressão Gênica/métodos , Ovário
2.
Am J Physiol Endocrinol Metab ; 324(2): E120-E134, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516471

RESUMO

Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17ß-estradiol (17ß-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17ß-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor ß1 (TGF-ß1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-ß1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.


Assuntos
Metaloproteinase 2 da Matriz , Fator de Crescimento Transformador beta1 , Masculino , Camundongos , Feminino , Animais , Fator de Crescimento Transformador beta1/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Longevidade , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Colágeno/metabolismo
3.
Biology (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453708

RESUMO

Crohn's disease (CD) and rheumatoid arthritis (RA) are immune mediated inflammatory diseases. Several studies indicate a role for microRNAs (miRNAs) in the pathogenesis of a variety of autoimmune diseases, including CD and RA. Our study's goal was to investigate circulating miRNAs in CD and RA patients to identify potential new biomarkers for early detection and personalized therapeutic approaches for autoimmune diseases. For this study, subjects with CD (n = 7), RA (n = 8) and healthy controls (n = 7) were recruited, and plasma was collected for miRNA sequencing. Comparison of the expression patterns of miRNAs between CD and healthy patients identified 99 differentially expressed miRNAs. Out of these miRNAs, 4 were down regulated, while 95 were up regulated. Comparison of miRNAs between RA and healthy patients identified 57 differentially expressed miRNAs. Out of those, 12 were down regulated, while 45 were up regulated. For all the miRNAs down regulated in CD and RA patients, 420 GO terms for biological processes were similarly regulated between both groups. Therefore, the identification of new plasma miRNAs allows the emergence of new biomarkers that can assist in the diagnosis and treatment of CD and RA.

4.
Geroscience ; 44(2): 1071-1081, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33954912

RESUMO

Evidence points to an important role of the growth hormone (GH) in the aging process and longevity. GH-deficient mice are smaller, live longer than normal littermates, and females have an increased ovarian reserve. The aim of the study was to evaluate the role of GH in the ovarian reserve by evaluating DNA damage, macrophage infiltration, and granulosa cell number in primordial and primary follicles. Experiment 1 used GH-deficient Ames dwarf mice (df/df, n = 12) and their normal littermates (N/df, n = 12), receiving GH or saline injections. Experiment 2 included transgenic mice overexpressing bovine GH (bGH) (n = 6) and normal mice (N, n = 6). DNA damage (anti-γH2AX) and macrophage counting (anti-CD68) were evaluated by immunofluorescence. Female df/df mice had lower γH2AX foci intensity in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05), indicating fewer DNA double-strand breaks (DSBs). GH treatment increased DSBs in both df/df and N/df mice. Inversely, bGH mice had a higher quantity of DSBs in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05). Df/df mice showed ovarian tissue with less macrophage infiltration than N/df mice (p < 0.05) and GH treatment increased macrophage infiltration (p < 0.05). In contrast, bGH mice had ovarian tissue with more macrophage infiltration compared to normal mice (p < 0.05). The current study shows that GH increases DNA DSBs in oocytes and granulosa cells and raises macrophage infiltration in the ovaries, pointing to the role of the GH/IGF-I axis in maintenance of oocyte DNA integrity and ovarian macrophage infiltration in mice.


Assuntos
Dano ao DNA , Hormônio do Crescimento , Macrófagos , Ovário , Animais , Bovinos , DNA , Feminino , Camundongos , Folículo Ovariano
5.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661509

RESUMO

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

6.
J Gerontol A Biol Sci Med Sci ; 76(9): 1561-1570, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34387333

RESUMO

The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice. Half of the piRNAs derive from transfer RNA fragments (tRF-piRNAs). Aging and dwarfism alter the ovarian expression of these novel sncRNAs. Specific tRF-piRNAs that increased with age might target and decrease the expression of the breast cancer antiestrogen resistance protein 3 (BCAR3) gene in the ovaries of old df/df mice. A set of piLRNAs that decreased with age and map to D10Wsu102e mRNA may have trans-regulatory functions. Other piLRNAs that decreased with age potentially target and may de-repress transposable elements, leading to a beneficial impact on ovarian aging in df/df mice. These results identify unique responses in ovarian tissues with regard to aging and dwarfism. Overall, our findings highlight the complexity of the aging effects on gene expression and suggest that, in addition to miRNAs, piRNAs, piLRNAs, tRF-piRNAs, and their potential targets can be central players in the maintenance of a younger ovarian phenotype in df/df mice.


Assuntos
Envelhecimento/genética , Longevidade/genética , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , Animais , Nanismo Hipofisário/genética , Feminino , Camundongos , Camundongos Knockout , Oogênese/genética , Fenótipo
7.
Aging Cell ; 20(7): e13420, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118183

RESUMO

Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH-deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa-miR-31, hsa-miR-146b, hsa-miR-30e, hsa-miR-100, hsa-miR-181b-2, hsa-miR-195, and hsa-miR-181b-1, which target the FoxO and mTOR pathways. Intriguingly, miR-181b-5p, miR-361-3p, miR-144-3p, and miR-155-5p were commonly regulated in the serum of humans and GH-deficient mice. In vitro assays confirmed target genes for the main up-regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age-related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.


Assuntos
Nanismo Hipofisário/genética , MicroRNAs/genética , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
8.
Mech Ageing Dev ; 194: 111425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383072

RESUMO

Decline in ovarian reserve with advancing age is associated with reduced fertility and the emergence of metabolic disturbances, osteoporosis, and neurodegeneration. Recent studies have provided insight into connections between ovarian insufficiency and systemic aging, although the basic mechanisms that promote ovarian reserve depletion remain unknown. Here, we sought to determine if chronological age is linked to changes in ovarian cellular senescence, transcriptomic, and epigenetic mechanisms in a mouse model. Histological assessments and transcriptional analyses revealed the accumulation of lipofuscin aggresomes and senescence-related transcripts (Cdkn1a, Cdkn2a, Pai-1 and Hmgb1) significantly increased with advancing age. Transcriptomic profiling and pathway analyses following RNA sequencing, revealed an upregulation of genes related to pro-inflammatory stress and cell-cycle inhibition, whereas genes involved in cell-cycle progression were downregulated; which could be indicative of senescent cell accumulation. The emergence of these senescence-related markers preceded the dramatic decline in primordial follicle reserve observed. Whole Genome Oxidative Bisulfite Sequencing (WGoxBS) found no genome-wide or genomic context-specific DNA methylation and hydroxymethylation changes with advancing age. These findings suggest that cellular senescence may contribute to ovarian aging, and thus, declines in ovarian follicular reserve. Cell-type-specific analyses across the reproductive lifespan are needed to fully elucidate the mechanisms that promote ovarian insufficiency.


Assuntos
Envelhecimento/patologia , Senescência Celular , Folículo Ovariano/patologia , Reserva Ovariana , Ovário/patologia , Insuficiência Ovariana Primária/patologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/genética , Citocinas/metabolismo , Metilação de DNA , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Folículo Ovariano/metabolismo , Folículo Ovariano/fisiopatologia , Ovário/metabolismo , Ovário/fisiopatologia , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/fisiopatologia , Transcriptoma
9.
J Gerontol A Biol Sci Med Sci ; 76(9): 1579-1586, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33037434

RESUMO

The mammalian female is born with a limited ovarian reserve of primordial follicles. These primordial follicles are slowly activated throughout the reproductive lifecycle, thereby determining lifecycle length. Once primordial follicles are exhausted, women undergo menopause, which is associated with several metabolic perturbations and a higher mortality risk. Long before exhaustion of the reserve, females experience severe declines in fertility and health. As such, significant efforts have been made to unravel the mechanisms that promote ovarian aging and insufficiency. In this review, we explain how long-living murine models can provide insights in the regulation of ovarian aging. There is now overwhelming evidence that most life-span-extending strategies, and long-living mutant models simultaneously delay ovarian aging. Therefore, it appears that the same mechanisms that regulate somatic aging may also be modulating ovarian aging and germ cell exhaustion. We explore several potential contributing mechanisms including insulin resistance, inflammation, and DNA damage-all of which are hallmarks of cellular aging throughout the body including the ovary. These findings are in alignment with the disposable soma theory of aging, which dictates a trade-off between growth, reproduction, and DNA repair. Therefore, delaying ovarian aging will not only increase the fertility window of middle age females, but may also actively prevent menopausal-related decline in systemic health parameters, compressing the period of morbidity in mid-to-late life in females.


Assuntos
Envelhecimento/fisiologia , Folículo Ovariano/fisiologia , Reserva Ovariana/fisiologia , Animais , Restrição Calórica , Feminino , Fertilidade/fisiologia , Menopausa/fisiologia , Camundongos , Modelos Animais
10.
Reprod Fertil Dev ; 32(18): 1338-1349, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33243369

RESUMO

The aim of this study was to investigate the effect of calorie restriction (CR) during pregnancy in mice on metabolism and ovarian function in the offspring. Pregnant female mice were divided into two groups, a control group and a CR group (n=7 in each). Mice in the CR group were fed 50% of the amount consumed by control females from Day 10 of gestation until delivery. After weaning, the offspring received diet ad libitum until 3 months of age, when ovaries were collected. Ovaries were serially cut and every sixth section was used for follicle counting. Female offspring from CR dams tended to have increased bodyweight compared with offspring from control females (P=0.08). Interestingly, fewer primordial follicles (60% reduction; P=0.001), transitional follicles (P=0.0006) and total follicles (P=0.006) were observed in offspring from CR mothers. The number of primary, secondary and tertiary follicles did not differ between the groups (P>0.05). The CR offspring had fewer DNA double-strand breaks in primary follicle oocytes (P=0.03). In summary, CR during the second half of gestation decreased primordial ovarian follicle reserve in female offspring. These findings suggest that undernutrition during the second half of gestation may decrease the reproductive lifespan of female offspring.


Assuntos
Restrição Calórica/efeitos adversos , Reserva Ovariana/fisiologia , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Glucose/metabolismo , Masculino , Desnutrição/complicações , Desnutrição/metabolismo , Desnutrição/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Reprodução/fisiologia
11.
Aging (Albany NY) ; 12(3): 2711-2722, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31955151

RESUMO

The uterine fibrosis contributes to gestational outcomes. Collagen deposition in the uterus is related to uterine aging. Senolytic therapies are an option for reducing health complications related to aging. We investigated effects of aging and the senolytic drug combination of dasatinib plus quercetin (D+Q) on uterine fibrosis. Forty mice, 20 young females (03-months) and 20 old females (18-months), were analyzed. Young (Y) and old (O) animals were divided into groups of 10 mice, with one treatment (T) group (YT and OT) and another control © group (YC and OC). Comparative analysis of Pi3k/Akt1/mTor and p53 gene expression and related microRNAs (miR34a, miR34b, miR34c, miR146a, miR449a, miR21a, miR126a, and miR181b) among groups was performed to test effects of age and treatment on collagen deposition pathways. Aging promoted downregulation of the Pi3k/Akt1/mTor signaling pathway (P = 0.005, P = 0.031, and P = 0.028, respectively) as well as a reduction in expression of miR34c (P = 0.029), miR126a (P = 0.009), and miR181b (P = 0.007). D+Q treatment increased p53 gene expression (P = 0.041) and decreased miR34a (P = 0.016). Our results demonstrate a role for the Pi3k/Akt1/mTor signaling pathway in uterine aging and suggest for the first time a possible anti-fibrotic effect in the uterus of D+Q senolytic therapy.


Assuntos
Envelhecimento/fisiologia , Dasatinibe/farmacologia , Fibrose/prevenção & controle , Quercetina/farmacologia , Doenças Uterinas/prevenção & controle , Útero/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Dasatinibe/administração & dosagem , Quimioterapia Combinada , Feminino , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Quercetina/administração & dosagem , Doenças Uterinas/patologia , Útero/fisiologia
12.
Geroscience ; 41(4): 395-408, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31359237

RESUMO

Caloric restriction (CR) increases the preservation of the ovarian primordial follicular reserve, which can potentially delay menopause. Rapamycin also increases preservation on the ovarian reserve, with similar mechanism to CR. Therefore, the aim of our study was to evaluate the effects of rapamycin and CR on metabolism, ovarian reserve, and gene expression in mice. Thirty-six female mice were allocated into three groups: control, rapamycin-treated (4 mg/kg body weight every other day), and 30% CR. Caloric restricted females had lower body weight (P < 0.05) and increased insulin sensitivity (P = 0.003), while rapamycin injection did not change body weight (P > 0.05) and induced insulin resistance (P < 0.05). Both CR and rapamycin females displayed a higher number of primordial follicles (P = 0.02 and 0.04, respectively), fewer primary, secondary, and tertiary follicles (P < 0.05) and displayed increased ovarian Foxo3a gene expression (P < 0.05). Despite the divergent metabolic effects of the CR and rapamycin treatments, females from both groups displayed a similar increase in ovarian reserve, which was associated with higher expression of ovarian Foxo3a.


Assuntos
Restrição Calórica , Imunossupressores/farmacologia , Folículo Ovariano/patologia , Reserva Ovariana , Sirolimo/farmacologia , Animais , Peso Corporal , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Resistência à Insulina , Camundongos Endogâmicos C57BL , Ovário/metabolismo , RNA/metabolismo
13.
Mol Cell Endocrinol ; 455: 23-32, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27771355

RESUMO

The aim of this study was to evaluate the effect of growth hormone (GH) in the maintenance of the ovarian primordial follicle reserve. Ovaries from 16 mo old GH-deficient Ames Dwarf (df/df) and Normal (N/df) mice were used. A subgroup of df/df and N mice received GH or saline injections for six weeks starting at 14 mo of age. In addition, ovaries from 12 mo old mice overexpressing bovine GH (bGH) and controls were used. df/df mice had higher number of primordial and total follicles than N/df mice (p < 0.05), while GH treatment decreased follicle counts in both genotypes (p < 0.05). In addition, bGH mice had lower number of primordial and total follicles than the controls (p < 0.05). pFoxO3a levels were higher in mice treated with GH and in bGH mice (p < 0.05) when comparing with age match controls. These results indicate that increased circulating GH is associated with a reduced ovarian primordial follicle reserve and increased pFoxO3a content in oocytes.


Assuntos
Proteína Forkhead Box O3/metabolismo , Hormônio do Crescimento/sangue , Longevidade/genética , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Reserva Ovariana/genética , Animais , Bovinos , Contagem de Células , Senescência Celular/genética , Feminino , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônio do Crescimento/genética , Hormônio do Crescimento/farmacologia , Longevidade/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Reserva Ovariana/efeitos dos fármacos
14.
Nutr Hosp ; 28(5): 1407-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24160193

RESUMO

INTRODUCTION: Green juice is popularly known for introducing antioxidants, improving intestinal function and reducing weight gain. OBJECTIVES: In the present study we determine the antioxidant effect of green juice comparing it with orange juice. METHODS: Rats were divided into three experimental groups and submitted to supplementation for 15 days: the (GJ) group received green juice, the (OJ) group received orange juice and the control group received water. We evaluated the antioxidant activity and total phenolic content of green and orange juices, as well as rat weight gain. We also investigated some oxidative stress parameters, namely thiobarbituric acid-reactive substances (TBARS), superoxide dismutase and catalase in rat cerebral cortex. RESULTS AND DISCUSSION: Results showed that GJ had significantly less weight gain than the control group. With respect to antioxidant activity screening, the remaining percentage of DPPH at dilutions 1:10, 1:100 and 1:1000 of green juice was 22.8%, 58% and 78%, and orange juice, at the same dilutions, was 5.6%, 5.6% and 77.2%, respectively. The ability of juices to reduce the ABTS radical was 3.5 mmol trolox/L for green juice and 5.2 mmol trolox/L for orange juice. Additionally, the green juice did not present any difference in total phenolic acid content when compared to orange juice. TBARS were reduced in GJ and OJ. Besides, GJ supplementation decreased catalase activity. In conclusion, our data showed that green juice reduced weight gain, lipoperoxidation and catalase activity, suggesting that this supplementation may have a protective effect against reactive species.


Introducción: El zumo verde es conocido popularmente como fuente de antioxidantes, mejorando la función intestinal y reduciendo la ganancia de peso. Objetivos: En este estudio determinamos el efecto antioxidante del zumo verde en comparación con el zumo de naranja. Métodos: Se dividió a las ratas en tres grupos experimentales y se las sometió a un suplemento durante 15 días: el grupo ZV recibió zumo verde, el grupo ZN recibió zumo de naranja y el grupo control recibió agua. Evaluamos la actividad antioxidante y el contenido total en fenoles de los zumos verde y de naranja, así como la ganancia de peso en las ratas. También investigamos algunos parámetros del estrés oxidativo, en concreto las sustancias reactivas del ácido tiobarbitúrico (SRATB), la superóxido dismutasa y la catalasa en la corteza cerebral de las ratas. Resultados y discusión: Los resultados mostraron que el ZV producía una ganancia de peso significativamente menor que en el grupo control. Con respecto al estudio de la actividad antioxidante, el porcentaje restante de DPPH en diluciones al 1:10, 1:100 y 1:1000 de zumo verde fue del 22,8%, 58% y 78%, y para el zumo de naranja, a las mismas diluciones, fue del 5,6%, 5,6% y 77,2%, respectivamente. La capacidad de los zumos para reducir el radical de ATB fue de 3,5 mmol trolox/l para el zumo verde y de 5,2 mmol trolox/l para el zumo de naranja. Adicionalmente, el zumo verde no mostró ninguna diferencia en el contenido total de ácido fenólico en comparación con el zumo de naranja. Las SRATB se redujeron con el ZV y el ZN. Además, el suplemento con ZV disminuyó la actividad catalasa. En conclusión, nuestros datos mostraron que el zumo verde redujo la ganancia de peso, la lipoperoxidación y la actividad catalasa, lo que sugiere que este suplemento podría tener un efecto protector frente a las especies reactivas.


Assuntos
Antioxidantes , Bebidas , Citrus sinensis , Alimento Funcional , Animais , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio
15.
Nutr. hosp ; 28(5): 1407-1412, sept.-oct. 2013. ilus
Artigo em Inglês | IBECS | ID: ibc-120346

RESUMO

INTRODUCTION: Green juice is popularly known for introducing antioxidants, improving intestinal function and reducing weight gain. OBJECTIVES: In the present study we determine the antioxidant effect of green juice comparing it with orange juice. METHODS: Rats were divided into three experimental groups and submitted to supplementation for 15 days: the (GJ) group received green juice, the (OJ) group received orange juice and the control group received water. We evaluated the antioxidant activity and total phenolic content of green and orange juices, as well as rat weight gain. We also investigated some oxidative stress parameters, namely thiobarbituric acid-reactive substances (TBARS), superoxide dismutase and catalase in rat cerebral cortex. RESULTS AND DISCUSSION: Results showed that GJ had significantly less weight gain than the control group. With respect to antioxidant activity screening, the remaining percentage of DPPH at dilutions 1:10, 1:100 and 1:1000 of green juice was 22.8%, 58% and 78%, and orange juice, at the same dilutions, was 5.6%, 5.6% and 77.2%, respectively. The ability of juices to reduce the ABTS radical was 3.5 mmol trolox/L for green juice and 5.2 mmol trolox/L for orange juice. Additionally, the green juice did not present any difference in total phenolic acid content when compared to orange juice. TBARS were reduced in GJ and OJ. Besides, GJ supplementation decreased catalase activity. In conclusion, our data showed that green juice reduced weight gain, lipoperoxidation and catalase activity, suggesting that this supplementation may have a protective effect against reactive species (AU)


Introducción: El zumo verde es conocido popularmente como fuente de antioxidantes, mejorando la función intestinal y reduciendo la ganancia de peso. Objetivos: En este estudio determinamos el efecto antioxidante del zumo verde en comparación con el zumo de naranja. Métodos: Se dividió a las ratas en tres grupos experimentales y se las sometió a un suplemento durante 15 días: el grupo ZV recibió zumo verde, el grupo ZN recibió zumo de naranja y el grupo control recibió agua. Evaluamos la actividad antioxidante y el contenido total en fenoles de los zumos verde y de naranja, así como la ganancia de peso en las ratas. También investigamos algunos parámetros del estrés oxidativo, en concreto las sustancias reactivas del ácido tiobarbitúrico (SRATB), la superóxido dismutasa y la catalasa en la corteza cerebral de las ratas. Resultados y discusión: Los resultados mostraron que el ZV producía una ganancia de peso significativamente menor que en el grupo control. Con respecto al estudio de la actividad antioxidante, el porcentaje restante de DPPH en diluciones al 1:10, 1:100 y 1:1000 de zumo verde fue del 22,8%, 58% y 78%, y para el zumo de naranja, a las mismas diluciones, fue del 5,6%, 5,6% y 77,2%, respectivamente. La capacidad de los zumos para reducir el radical de ATB fue de 3,5 mmol trolox/l para el zumo verde y de 5,2 mmol trolox/l para el zumo de naranja. Adicionalmente, el zumo verde no mostró ninguna diferencia en el contenido total de ácido fenólico en comparación con el zumo de naranja. Las SRATB se redujeron con el ZV y el ZN. Además, el suplemento con ZV disminuyó la actividad catalasa. En conclusión, nuestros datos mostraron que el zumo verde redujo la ganancia de peso, la lipoperoxidación y la actividad catalasa, lo que sugiere que este suplemento podría tener un efecto protector frente a las especies reactivas (AU)


Assuntos
Animais , Ratos , Sucos , Antioxidantes/farmacocinética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Modelos Animais , Aumento de Peso , Peroxidação de Lipídeos , Catalase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...