Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203962

RESUMO

Polymer composites, hailed for their ultra-strength and lightweight attributes, stand out as promising materials for the upcoming era of space vehicles. The selection of the polymer matrix plays a pivotal role in material design, given its significant impact on bulk-level properties through the reinforcement/polymer interface. To aid in the systematic design of such composite systems, molecular-level calculations are employed to establish the relationship between interfacial characteristics and mechanical response, specifically stiffness. This study focuses on the interaction of fluorinated and non-fluorinated cyanate ester monomers with graphene or a BN monolayer, representing non-polymerized ester composites. Utilizing micromechanics and the density functional theory method to analyze interaction energy, charge density, and stiffness, our findings reveal that the fluorinated cyanate-ester monomer demonstrates lower interaction energy, reduced pull-apart force, and a higher separation point compared to the non-fluorinated counterpart. This behavior is attributed to the steric hindrance caused by fluorine atoms. Furthermore, the BN monolayer exhibits enhanced transverse stiffness due to increased interfacial strength, stemming from the polar nature of B-N bonds on the surface, as opposed to the C-C bonds of graphene. These molecular-level results are intended to inform the design of next-generation composites incorporating cyanate esters, specifically for structural applications.

2.
RSC Adv ; 12(40): 25924-25931, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199593

RESUMO

Two-dimensional (2D) hybrid halide perovskites have been scrutinized as candidate materials for solar cells because of their tunable structural and compositional properties. Results based on density functional theory demonstrate its thickness-dependent stability. We have observed that the bandgap decreases from the mono- to quad-layer because of the transformation from 2D towards 3D. Due to the transformation, the carrier mobility is lowered with the corresponding smaller effective mass. On the other hand, the multilayer structures have good optical properties with an absorption coefficient of about 105 cm-1. The calculated absorption spectra lie between 248 nm and 496 nm, leading to optical activity of the 2D multilayer CH3NH3PbI3 systems in the visible and ultraviolet regions. The strength of the optical absorption increases with an increase in thickness. Overall results from this theoretical study suggest that this 2D multilayer CH3NH3PbI3 is a good candidate for photovoltaic and optoelectronic device applications.

3.
ACS Omega ; 6(30): 19546-19552, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368540

RESUMO

Environmental effect on the physical and chemical properties of two-dimensional monolayers is a fundamental issue for their practical applications in nanoscale devices operating under ambient conditions. In this paper, we focus on the effect of ozone exposure on group-IV elemental monolayers. Using density functional theory and the climbing image nudged elastic band approach, calculations are performed to find the minimum energy path of O3-mediated oxidation of the group-IV monolayers, namely graphene, silicene, germanene, and stanene. Graphene and silicene are found to represent two end points of the ozonation process: the former showing resistance to oxidation with an energy barrier of 0.68 eV, while the latter exhibit a rapid, spontaneous dissociation of O3 into atomic oxygens accompanied by the formation of epoxide like Si-O-Si bonds. Germanene and stanene also form oxides when exposed to O3, but with a small energy barrier of about 0.3-0.4 eV. Analysis of the results via Bader's charge and density of states shows a higher degree of ionicity of the Si-O bond followed by Ge-O and Sn-O bonds relative to the C-O bond to be the primary factor leading to the distinct ozonation response of the studied group-IV monolayers. In summary, ozonation appears to open the band gap of the monolayers with semiconducting properties forming stable oxidized monolayers, which could likely affect group-IV monolayer-based electronic and photonic devices.

4.
Nanotechnology ; 32(23)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33588399

RESUMO

Graphene-based hybrid van der Waals structures have emerged as a new class of materials for novel multifunctional applications. In such a vertically-stacked heterostructure, it is expected that its mechanical strength can be tailored by the orientation of the constituent monolayers relative to each other. In this paper, we explore this hypothesis by investigating the orientation dependence of the mechanical properties of graphene/h-BN heterostructures together with that of graphene and h-BN bilayers. The calculated results simulating the pull-out experiment show a noticeable dependence of the (out-of-plane) transverse mechanical response, which is primarily governed by the interlayer strength, on the stacking configurations. The degree of the dependence is directly related to the nature of the interlayer interactions, which change from covalent to covalent polar in going from graphene bilayer to graphene/BN to BN bilayer. In contrast, molecular dynamics simulations mimicking nanoindentation experiments predict that the in-plane mechanical response, which mainly depends on the intra-layer interactions, shows little or no dependence on the stacking-order. The BN monolayer is predicted to fracture before graphene regardless of the stacking pattern or configuration in the graphene/BN heterostructure, affirming the mechanical robustness of graphene. Thus, the graphene-based hybrid structures retain both stiffness and toughness required for a wide range of optoelectromechanical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...