Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 32(6): 1637-44, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26795116

RESUMO

The photoelectrochemical characterization of silicon carbide (SiC) electrodes is important for enabling a wide range of potential applications for this semiconductor. However, photocorrosion of the SiC surface remains a key challenge, because this process considerably hinders the deployment of this material into functional devices. In this report, we use cyclic voltammetry to investigate the stability of n-type 6H-SiC photoelectrodes in buffered aqueous electrolytes. For measurements in pure Tris buffer, photogenerated holes accumulate at the interface under anodic polarization, resulting in the formation of a porous surface oxide layer. Two possibilities are presented to significantly enhance the stability of the SiC photoelectrodes. In the first approach, redox molecules are added to the buffer solution to kinetically facilitate hole transfer to these molecules, and in the second approach, water oxidation in the electrolyte is induced by depositing a cobalt phosphate catalyst onto the semiconductor surface. Both methods are found to effectively suppress photocorrosion of the SiC electrodes, as confirmed by atomic force microscopy and X-ray photoelectron spectroscopy measurements. The presented study provides straightforward routes to stabilize n-type SiC photoelectrodes in aqueous electrolytes, which is essential for a possible utilization of this material in the fields of photocatalysis and multimodal biosensing.


Assuntos
Compostos Inorgânicos de Carbono/efeitos da radiação , Eletrodos , Compostos de Silício/efeitos da radiação , Compostos Inorgânicos de Carbono/química , Catálise , Cobalto/química , Técnicas Eletroquímicas , Ferrocianetos/química , Hidrogênio/química , Hidroquinonas/química , Oxirredução , Oxigênio/química , Fosfatos/química , Compostos de Silício/química , Trometamina , Raios Ultravioleta , Água/química
2.
Nano Lett ; 14(12): 6823-7, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25414977

RESUMO

The perfect transmission of charge carriers through potential barriers in graphene (Klein tunneling) is a direct consequence of the Dirac equation that governs the low-energy carrier dynamics. As a result, localized states do not exist in unpatterned graphene, but quasibound states can occur for potentials with closed integrable dynamics. Here, we report the observation of resonance states in photoswitchable self-assembled molecular(SAM)-graphene hybrid. Conductive AFM measurements performed at room temperature reveal strong current resonances, the strength of which can be reversibly gated on- and off- by optically switching the molecular conformation of the mSAM. Comparisons of the voltage separation between current resonances (∼ 70-120 mV) with solutions of the Dirac equation indicate that the radius of the gating potential is ∼ 7 ± 2 nm with a strength ≥ 0.5 eV. Our results and methods might provide a route toward optically programmable carrier dynamics and transport in graphene nanomaterials.

3.
ACS Appl Mater Interfaces ; 6(12): 9705-10, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24866105

RESUMO

Exhibiting a combination of exceptional structural and electronic properties, graphene has a great potential for the development of highly sensitive sensors. To date, many challenging chemical, biochemical, and biologic sensing tasks have been realized based on graphene. However, many of these sensors are rather unspecific. To overcome this problem, for instance, the sensor surface can be modified with analyte-specific transducers such as enzymes. One problem associated with the covalent attachment of such biomolecular systems is the introduction of crystal defects that have a deleterious impact on the electronic properties of the sensor. In this work, we present a versatile platform for biosensing applications based on polymer-modified CVD-grown graphene transistors. The functionalization method of graphene presented here allows one to integrate several functional groups within surface-bound polymer brushes without the introduction of additional defects. To demonstrate the potential of this polymer brush functionalization scaffold, we modified solution-gated graphene field-effect transistors with the enzyme acetylcholinesterase and a transducing group, allowing the detection of the neurotransmitter acetylcholine. Taking advantage of the transducing capability of graphene transistors and the versatility of polymer chemistry and enzyme biochemistry, this study presents a novel route for the fabrication of highly sensitive, multipurpose transistor sensors that can find application for a multitude of biologically relevant analytes.


Assuntos
Técnicas Biossensoriais/métodos , Grafite/química , Polímeros/química , Nanotecnologia , Soluções/química , Transistores Eletrônicos
4.
ACS Appl Mater Interfaces ; 5(4): 1393-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23357505

RESUMO

We demonstrate the functionalization of n-type (100) and (111) 3C-SiC surfaces with organosilanes. Self-assembled monolayers (SAMs) of amino-propyldiethoxymethylsilane (APDEMS) and octadecyltrimethoxysilane (ODTMS) are formed via wet chemical processing techniques. Their structural, chemical, and electrical properties are investigated using static water contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy, revealing that the organic layers are smooth and densely packed. Furthermore, combined contact potential difference and surface photovoltage measurements demonstrate that the heterostructure functionality and surface potential can be tuned by utilizing different organosilane precursor molecules. Molecular dipoles are observed to significantly affect the work functions of the modified surfaces. Furthermore, the magnitude of the surface band bending is reduced following reaction of the hydroxylated surfaces with organosilanes, indicating that partial passivation of electrically active surface states is achieved. Micropatterning of organic layers is demonstrated by lithographically defined oxidation of organosilane-derived monolayers in an oxygen plasma, followed by visualization of resulting changes of the local wettability, as well as fluorescence microscopy following immobilization of fluorescently labeled BSA protein.

5.
Biochem Biophys Res Commun ; 424(2): 348-53, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22771805

RESUMO

There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/efeitos da radiação , Gálio/química , Animais , Fenômenos Biofísicos , Proliferação de Células/efeitos da radiação , DNA/química , Fibroblastos/química , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Fibronectinas/metabolismo , Camundongos , Microscopia de Força Atômica , Semicondutores , Propriedades de Superfície , Raios X
6.
Adv Mater ; 24(33): 4511-7, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22760856

RESUMO

The surface modification of solution-gated organic field-effect transistors is investigated. The introduction of different surface groups leads to a control of the pH sensitivity, determined by the pKa value of the added surface moiety. Together with the successful demonstration of enzyme modification of the surface, this work reveals the large potential of organic SGFETs for biosensor applications.


Assuntos
Eletrólitos/química , Enzimas Imobilizadas/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Tiofenos/química , Transistores Eletrônicos , Eletrodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...