Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Invest Radiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38948965

RESUMO

OBJECTIVES: Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 is a clinical and research standard for evaluating malignant tumors and lymph node metastasis. However, quantitative analysis of nodal status is limited to measurement of short axis diameter (SAD), and metastatic lymph nodes below 10 mm in SAD are often not detected. The purpose of this study was to evaluate the value of multifrequency magnetic resonance elastography (MRE) when added to RECIST 1.1 for detection of lymph node metastasis. MATERIALS AND METHODS: Twenty-five benign and 82 metastatic lymph nodes were prospectively examined by multifrequency MRE at 1.5 T using tomoelastography postprocessing at 30, 40, 50, and 60 Hz (total scan time of 4 minutes). Shear wave speed as a surrogate of soft tissue stiffness was provided in m/s. Positron emission tomography-computed tomography was used as reference standard for identification of abdominal lymph node metastasis from histologically confirmed primary tumors. The diagnostic performance of MRE was compared with that of SAD according to RECIST 1.1 and evaluated by receiver operating characteristic curve analysis using generalized linear mixed models and binary logistic mixed models. Sensitivity, specificity, and predictive values were calculated for different cutoffs. RESULTS: Metastatic lymph nodes (1.90 ± 0.57 m/s) were stiffer than benign lymph nodes (0.98 ± 0.20 m/s, P < 0.001). An area under the curve of 0.95 for a cutoff of 1.32 m/s was calculated. Using a conservative approach with 1.0 specificity, we found sensitivity (SAD/MRE/MRE + SAD, 0.56/0.84/0.88), negative predictive values (0.41/0.66/0.71), and overall accuracy (0.66/0.88/0.91) to be improved using MRE and even higher for combined MRE and SAD. CONCLUSIONS: Multifrequency MRE improves metastatic abdominal lymph node detection by 25% based on higher tissue stiffness-even for lymph nodes with an SAD ≤10 mm. Stiffness information is quick to obtain and would be a promising supplement to RECIST.

2.
Adv Sci (Weinh) ; : e2402338, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874205

RESUMO

Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.

3.
Acta Biomater ; 182: 42-53, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729549

RESUMO

Magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI) are complementary imaging techniques that detect disease based on viscoelasticity and water mobility, respectively. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering the clinical translation of combined DWI-MRE markers. We used DWI-MRE to study 129 biomaterial samples including native and cross-linked collagen, glycosaminoglycans (GAGs) with different sulfation levels, and decellularized specimens of pancreas and liver, all with different proportions of solid tissue, or solid fractions. We developed a theoretical framework of the relationship between mechanical loss and tissue-water mobility based on two parameters, solid and fluid viscosity. These parameters revealed distinct DWI-MRE property clusters characterizing weak, moderate, and strong water-network interactions. Sparse networks interacting weakly with water, such as collagen or diluted decellularized tissue, resulted in marginal changes in water diffusion over increasing solid viscosity. In contrast, dense networks with larger solid fractions exhibited both free and hindered water diffusion depending on the polarity of the solid components. For example, polar and highly sulfated GAGs as well as native soft tissues hindered water diffusion despite relatively low solid viscosity. Our results suggest that two fundamental properties of tissue networks, solid fraction and network polarity, critically influence solid and fluid viscosity in biological tissues. Since clinical DWI and MRE are sensitive to these viscosity parameters, the framework we present here can be used to detect tissue remodeling and architectural changes in the setting of diagnostic imaging. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of biological tissues provide a wealth of information on the vital state of cells and host matrix. Combined measurement of viscoelasticity and water diffusion by medical imaging is sensitive to tissue microarchitecture. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering full exploitation of these properties as a combined clinical biomarker. Therefore, we analyzed the parameter space accessible by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) and developed a theoretical framework for the relationship between water mobility and mechanical parameters in biomaterials. Our theory of solid material properties related to particle motion can be translated to clinical radiology using clinically established MRE and DWI.


Assuntos
Elasticidade , Água , Viscosidade , Água/química , Difusão , Animais , Técnicas de Imagem por Elasticidade/métodos , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Colágeno/química , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Fígado/diagnóstico por imagem
4.
Biomater Adv ; 161: 213884, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723432

RESUMO

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF SIGNIFICANCE: Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.


Assuntos
Movimento Celular , Técnicas de Imagem por Elasticidade , Matriz Extracelular , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Humanos , Matriz Extracelular/patologia , Matriz Extracelular/metabolismo , Técnicas de Imagem por Elasticidade/métodos , Animais , Camundongos , Linhagem Celular Tumoral , Imagem de Difusão por Ressonância Magnética/métodos
5.
Insights Imaging ; 15(1): 91, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530543

RESUMO

OBJECTIVES: The capability of MR elastography (MRE) to differentiate fibrosis and inflammation, and to provide precise diagnoses is crucial, whereas the coexistence of fibrosis and inflammation may obscure the diagnostic accuracy. METHODS: In this retrospective study, from June 2020 to December 2022, chronic viral hepatitis patients who underwent multifrequency MRE (mMRE) were included in, and further divided into, training and validation cohorts. The hepatic viscoelastic parameters [shear wave speed (c) and loss angle (φ) of the complex shear modulus] were obtained from mMRE. The logistic regression and receiver operating characteristic (ROC) curves were generated to evaluate performance of viscoelastic parameters for fibrosis and inflammation. RESULTS: A total of 233 patients were assigned to training cohort and validation cohorts (mean age, 52 years ± 13 (SD); 51 women; training cohort, n = 170 (73%), and validation cohort, n = 63 (27%)). Liver c exhibited superior performance in detecting fibrosis with ROC (95% confidence interval) of ≥ S1 (0.96 (0.92-0.99)), ≥ S2 (0.86 (0.78-0.92)), ≥ S3 (0.89 (0.84-0.95)), and S4 (0.88 (0.83-0.93)). Similarly, φ was effective in diagnosing inflammation with ROC values of ≥ G2 (0.72 (0.63-0.81)), ≥ G3 (0.88 (0.83-0.94)), and G4 (0.92 (0.87-0.98)). And great predictive discrimination for fibrosis and inflammation were shown in validation cohort (all AUCs > 0.75). CONCLUSION: The viscoelastic parameters derived from multifrequency MRE could realize simultaneous detection of hepatic fibrosis and inflammation. CRITICAL RELEVANCE STATEMENT: Fibrosis and inflammation coexist in chronic liver disease which obscures the diagnostic performance of MR elastography, whereas the viscoelastic parameters derived from multifrequency MR elastography could realize simultaneous detection of hepatic fibrosis and inflammation. KEY POINTS: • Hepatic biomechanical parameters derived from multifrequency MR elastography could effectively detect fibrosis and inflammation. • Liver stiffness is useful for detecting fibrosis independent of inflammatory activity. • Fibrosis could affect the diagnostic efficacy of liver viscosity in inflammation, especially in early-grade of inflammation.

6.
Z Med Phys ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508947

RESUMO

Time-harmonic elastography (THE) is an emerging ultrasound imaging technique that allows full-field mapping of the stiffness of deep biological tissues. THE's unique ability to rapidly capture stiffness in multiple tissues has never been applied for imaging skeletal muscle. Therefore, we addressed the lack of data on temporal changes in skeletal muscle stiffness while simultaneously covering stiffness of different muscles. Acquiring repeated THE scans every five seconds we quantified shear-wave speed (SWS) as a marker of stiffness of the long head (LHB) and short head (SHB) of biceps brachii and of the brachialis muscle (B) in ten healthy volunteers. SWS was continuously acquired during a 3-min isometric preloading phase, a 3-min loading phase with different weights (4, 8, and 12 kg), and a 9-min postloading phase. In addition, we analyzed temporal SWS standard deviation (SD) as a marker of muscle contraction regulation. Our results (median [min, max]) showed both SWS at preloading (LHB: 1.04 [0.94, 1.12] m/s, SHB: 0.86 [0.78, 0.94] m/s, B: 0.96 [0.87, 1.09] m/s, p < 0.001) and the increase in SWS with loading weight to be muscle-specific (LHB: 0.010 [0.002, 0.019] m/s/kg, SHB: 0.022 [0.017, 0.042] m/s/kg, B: 0.039 [0.019, 0.062] m/s/kg, p < 0.001). Additionally, SWS during loading increased continuously over time by 0.022 [0.004, 0.051] m/s/min (p < 0.01). Using an exponential decay model, we found an average relaxation time of 27 seconds during postloading. Analogously, SWS SD at preloading was also muscle-specific (LHB: 0.018 [0.011, 0.029] m/s, SHB: 0.021 [0.015, 0.027] m/s, B: 0.024 [0.018, 0.037] m/s, p < 0.05) and increased by 0.005 [0.003, 0.008] m/s/kg (p < 0.01) with loading. SWS SD did not change over loading time and decreased immediately in the postloading phase. Taken together, THE of skeletal muscle is a promising imaging technique for in vivo quantification of stiffness and stiffness changes in multiple muscle groups within seconds. Both the magnitude of stiffness changes and their temporal variation during isometric exercise may reflect the functional status of skeletal muscle and provide additional information to the morphological measures obtained by conventional imaging modalities.

7.
J Magn Reson Imaging ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344910

RESUMO

BACKGROUND: Pretreatment identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is important when selecting treatment strategies. PURPOSE: To improve models for predicting MVI and recurrence-free survival (RFS) by developing nomograms containing three-dimensional (3D) MR elastography (MRE). STUDY TYPE: Prospective. POPULATION: 188 patients with HCC, divided into a training cohort (n = 150) and a validation cohort (n = 38). In the training cohort, 106/150 patients completed a 2-year follow-up. FIELD STRENGTH/SEQUENCE: 1.5T 3D multifrequency MRE with a single-shot spin-echo echo planar imaging sequence, and 3.0T multiparametric MRI (mp-MRI), consisting of diffusion-weighted echo planar imaging, T2-weighted fast spin echo, in-phase out-of-phase T1-weighted fast spoiled gradient-recalled dual-echo and dynamic contrast-enhanced gradient echo sequences. ASSESSMENT: Multivariable analysis was used to identify the independent predictors for MVI and RFS. Nomograms were constructed for visualization. Models for predicting MVI and RFS were built using mp-MRI parameters and a combination of mp-MRI and 3D MRE predictors. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, chi-squared or Fisher's exact tests, multivariable analysis, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log rank tests. P < 0.05 was considered significant. RESULTS: Tumor c and liver c were independent predictors of MVI and RFS, respectively. Adding tumor c significantly improved the diagnostic performance of mp-MRI (AUC increased from 0.70 to 0.87) for MVI detection. Of the 106 patients in the training cohort who completed the 2-year follow up, 34 experienced recurrence. RFS was shorter for patients with MVI-positive histology than MVI-negative histology (27.1 months vs. >40 months). The MVI predicted by the 3D MRE model yielded similar results (26.9 months vs. >40 months). The MVI and RFS nomograms of the histologic-MVI and model-predicted MVI-positive showed good predictive performance. DATA CONCLUSION: Biomechanical properties of 3D MRE were biomarkers for MVI and RFS. MVI and RFS nomograms were established. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

8.
Acta Neuropathol ; 147(1): 8, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175305

RESUMO

Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.


Assuntos
Técnicas de Imagem por Elasticidade , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Água
9.
J Magn Reson Imaging ; 59(3): 1074-1082, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37209387

RESUMO

BACKGROUND: Pancreatic stiffness and extracellular volume fraction (ECV) are potential imaging biomarkers for pancreatic fibrosis. Clinically relevant postoperative fistula (CR-POPF) is one of the most severe complications after pancreaticoduodenectomy. Which imaging biomarker performs better for predicting the risk of CR-POPF remains unknown. PURPOSE: To evaluate the diagnostic performance of ECV and tomoelastography-derived pancreatic stiffness for predicting the risk of CR-POPF in patients undergoing pancreaticoduodenectomy. STUDY TYPE: Prospective. POPULATION: Eighty patients who underwent multiparametric pancreatic MRI before pancreaticoduodenectomy, among whom 16 developed CR-POPF and 64 did not. FIELD STRENGTH/SEQUENCE: 3 T/tomoelastography and precontrast and postcontrast T1 mapping of the pancreas. ASSESSMENT: Pancreatic stiffness was measured on the tomographic c-map, and pancreatic ECV was calculated from precontrast and postcontrast T1 maps. Pancreatic stiffness and ECV were compared with histological fibrosis grading (F0-F3). The optimal cutoff values for predicting CR-POPF were determined, and the correlation between CR-POPF and imaging parameters was evaluated. STATISTICAL TESTS: The Spearman's rank correlation and multivariate linear regression analysis was conducted. The receiver operating characteristic curve analysis and logistic regression analysis was performed. A double-sided P < 0.05 indicated a statistically significant difference. RESULTS: Pancreatic stiffness and ECV both showed a significantly positive correlation with histological pancreatic fibrosis (r = 0.73 and 0.56, respectively). Patients with advanced pancreatic fibrosis had significantly higher pancreatic stiffness and ECV compared to those with no/mild fibrosis. Pancreatic stiffness and ECV were also correlated with each other (r = 0.58). Lower pancreatic stiffness (<1.38 m/sec), lower ECV (<0.28), nondilated main pancreatic duct (<3 mm) and pathological diagnosis other than pancreatic ductal adenocarcinoma were associated with higher risk of CR-POPF at univariate analysis, and pancreatic stiffness was independently associated with CR-POPF at multivariate analysis (odds ratio: 18.59, 95% confidence interval: 4.45, 77.69). DATA CONCLUSION: Pancreatic stiffness and ECV were associated with histological fibrosis grading, and pancreatic stiffness was an independent predictor for CR-POPF. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 5.


Assuntos
Pâncreas , Fístula Pancreática , Humanos , Fístula Pancreática/complicações , Fístula Pancreática/diagnóstico , Estudos Prospectivos , Fatores de Risco , Pâncreas/patologia , Fibrose , Complicações Pós-Operatórias/patologia , Imageamento por Ressonância Magnética/efeitos adversos , Estudos Retrospectivos
10.
J Clin Med ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137615

RESUMO

Hepatitis C virus (HCV) infection can lead to hepatic fibrosis. The advent of direct-acting antivirals (DAAs) has substantially improved sustained virological response (SVR) rates. In this context, kidney transplant recipients (KTRs) are of particular interest due to their higher HCV infection rates and uncertain renal excretion and bioavailability of DAAs. We investigated liver stiffness after DAA treatment in 15 HCV-infected KTRs using ultrasound shear wave elastography (SWE) in comparison with magnetic resonance elastography (MRE). KTRs were treated with DAAs (daclatasvir and sofosbuvir) for three months and underwent SWE at baseline, end of therapy (EOT), and 3 (EOT+3) and 12 months (EOT+12) after EOT. Fourteen patients achieved SVR12. Shear wave speed (SWS)-as a surrogate parameter for tissue stiffness-was substantially lower at all three post-therapeutic timepoints compared with baseline (EOT: -0.42 m/s, p < 0.01; CI = -0.75--0.09, EOT+3: -0.43 m/s, p < 0.01; CI = -0.75--0.11, and EOT+12: -0.52 m/s, p < 0.001; CI = -0.84--0.19), suggesting liver regeneration after viral eradication and end of inflammation. Baseline SWS correlated positively with histopathological fibrosis scores (r = 0.48; CI = -0.11-0.85). Longitudinal results correlated moderately with APRI (r = 0.41; CI = 0.12-0.64) but not with FIB-4 scores (r = 0.12; CI = -0.19-0.41). Although higher on average, SWE-derived measurements correlated strongly with MRE (r = 0.64). In conclusion, SWE is suitable for non-invasive therapy monitoring in KTRs with HCV infection.

11.
Front Bioeng Biotechnol ; 11: 1236949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026891

RESUMO

Stiffness plays a vital role in diagnosing renal fibrosis. However, perfusion influences renal stiffness in various chronic kidney diseases. Therefore, we aimed to characterize the effect of tissue perfusion on renal stiffness and tissue fluidity measured by tomoelastography based on multifrequency magnetic resonance elastography in an ex vivo model. Five porcine kidneys were perfused ex vivo in an MRI-compatible normothermic machine perfusion setup with adjusted blood pressure in the 50/10-160/120 mmHg range. Simultaneously, renal cortical and medullary stiffness and fluidity were obtained by tomoelastography. For the cortex, a statistically significant (p < 0.001) strong positive correlation was observed between both perfusion parameters (blood pressure and resulting flow) and stiffness (r = 0.95, 0.91), as well as fluidity (r = 0.96, 0.92). For the medulla, such significant (p < 0.001) correlations were solely observed between the perfusion parameters and stiffness (r = 0.88, 0.71). Our findings demonstrate a strong perfusion dependency of renal stiffness and fluidity in an ex vivo setup. Moreover, changes in perfusion are rapidly followed by changes in renal mechanical properties-highlighting the sensitivity of tomoelastography to fluid pressure and the potential need for correcting mechanics-derived imaging biomarkers when addressing solid structures in renal tissue.

12.
Front Bioeng Biotechnol ; 11: 1140734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650041

RESUMO

Introduction: Cerebral pulsation is a vital aspect of cerebral hemodynamics. Changes in arterial pressure in response to cardiac pulsation cause cerebral pulsation, which is related to cerebrovascular compliance and cerebral blood perfusion. Cerebrovascular compliance and blood perfusion influence the mechanical properties of the brain, causing pulsation-induced changes in cerebral stiffness. However, there is currently no imaging technique available that can directly quantify the pulsation of brain stiffness in real time. Methods: Therefore, we developed non-invasive ultrasound time-harmonic elastography (THE) technique for the real-time detection of brain stiffness pulsation. We used state-of-the-art plane-wave imaging for interleaved acquisitions of shear waves at a frequency of 60 Hz to measure stiffness and color flow imaging to measure cerebral blood flow within the middle cerebral artery. In the second experiment, we used cost-effective lineby-line B-mode imaging to measure the same mechanical parameters without flow imaging to facilitate future translation to the clinic. Results: In 10 healthy volunteers, stiffness increased during the passage of the arterial pulse wave from 4.8% ± 1.8% in the temporal parenchyma to 11% ± 5% in the basal cisterns and 13% ± 9% in the brain stem. Brain stiffness peaked in synchrony with cerebral blood flow at approximately 180 ± 30 ms after the cardiac R-wave. Line-by-line THE provided the same stiffness values with similar time resolution as high-end plane-wave THE, demonstrating the robustness of brain stiffness pulsation as an imaging marker. Discussion: Overall, this study sets the background and provides reference values for time-resolved THE in the human brain as a cost-efficient and easy-touse mechanical biomarker associated with cerebrovascular compliance.

13.
Quant Imaging Med Surg ; 13(8): 4792-4805, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581033

RESUMO

Background: Although there is growing evidence that functional involvement and structural changes of mesenteric adipose tissue (MAT) influence the course of Crohn's disease (CD), its viscoelastic properties remain elusive. Therefore, we aimed to investigate the viscoelastic properties of MAT in CD using magnetic resonance elastography (MRE), providing reference values for CD diagnosis. Methods: In this prospective proof-of-concept study, 31 subjects (CD: n=11; healthy controls: n=20) were consecutively enrolled in a specialized care center for inflammatory bowel diseases (tertiary/quaternary care). Inclusion criteria for the CD patients were a clinically and endoscopically established diagnosis of CD based on the clinical record, absence of other concurrent bowel diseases, scheduled surgery for the following day, and age of at least 18 years. Diagnoses were confirmed by histological analysis of the resected bowel the day after MRE. Subjects were investigated using MRE at 1.5-T with frequencies of 40-70 Hz. To retrieve shear wave speed (SWS), volumes of interest (VOIs) in MAT were drawn adjacent to CD lesions (MATCD) and on the opposite side without adjacent bowel lesions in patients (MATCD_Opp) and controls (MATCTRL). The presented study is not registered in the clinical trial platform. Results: A statistically significant decrease in mean SWS of 7% was found for MATCD_Opp vs. MATCTRL (0.76±0.05 vs. 0.82±0.04 m/s, P=0.012), whereas there was a nonsignificant trend with an 8% increase for MATCD vs. MATCD_Opp (0.82±0.07 vs. 0.76±0.05 m/s, P=0.098) and no difference for MATCD vs. MATCTRL. Preliminary area under the receiver operating characteristic curve (AUC) analysis showed diagnostic accuracy in detecting CD to be excellent for SWS of MATCD_Opp [AUC =0.82; 95% confidence interval (CI): 0.64-0.96] but poor for SWS of MATCD (AUC =0.52; 95% CI: 0.34-0.73). Conclusions: This study demonstrates the feasibility of MRE of MAT and presents preliminary reference values for CD patients and healthy controls. Our results motivate further studies for the biophysical characterization of MAT in inflammatory bowel disease.

14.
Adv Sci (Weinh) ; 10(26): e2303523, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553780

RESUMO

Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.


Assuntos
Neoplasias , Humanos , Colágeno , Prognóstico , Microambiente Tumoral
15.
NMR Biomed ; 36(11): e5003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455558

RESUMO

Chronic kidney disease (CKD) is characterized by structural changes, such as tubular atrophy, renal fibrosis, and glomerulosclerosis, all of which affect the viscoelastic properties of biological tissues. However, detection of renal viscoelasticity changes because diagnostic markers by in vivo elastography lack histopathological validation through animal models. Therefore, we investigated in vivo multiparametric magnetic resonance imaging (mp-MRI), including multifrequency magnetic resonance elastography-based tomoelastography, in the kidneys of 10 rats with adenine-induced CKD and eight healthy controls. Kidney volume (in mm3 ), water diffusivity (apparent diffusion coefficient [ADC] in mm2 /s), shear wave speed (SWS; in m/s; related to stiffness), and wave penetration rate (PR; in m/s; related to inverse viscosity) were quantified by mp-MRI and correlated with histopathologically determined renal fibrosis (collagen area fraction [CAF]; in %). Kidney volume (40% ± 29%, p = 0.009), SWS (11% ± 12%, p = 0.016), and PR (20% ± 15%, p = 0.004) were significantly increased in CKD, which was accompanied by ADC (-24% ± 27%, p = 0.02). SWS, PR, and ADC were correlated with CAF with R = 0.63, 0.75, and -0.5 (all p < 0.05), respectively. In the CKD rats, histopathology showed tubule dilation due to adenine crystal deposition. Collectively, our results suggest that collagen accumulation during CKD progression transforms soft-compliant renal tissue into a more rigid-solid state with reduced water mobility. We hypothesized that tubule dilation-a specific feature of our model-might lead to higher intraluminal pressure, which could also contribute to elevated renal stiffness. Tomoelastography is a promising tool for noninvasively assessing disease progression, detecting biomechanical properties that are sensitive to different pathologic features of CKD.


Assuntos
Técnicas de Imagem por Elasticidade , Insuficiência Renal Crônica , Ratos , Animais , Rim/diagnóstico por imagem , Rim/patologia , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia , Fibrose , Água , Adenina , Colágeno , Técnicas de Imagem por Elasticidade/métodos
16.
Acta Biomater ; 169: 118-129, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37507032

RESUMO

The liver is a highly vascularized organ where fluid properties, including vascular pressure, vessel integrity and fluid viscosity, play a critical role in gross mechanical properties. To study the effects of portal pressure, liver confinement, fluid viscosity, and tissue crosslinking on liver stiffness, water diffusion, and vessel size, we applied multiparametric magnetic resonance imaging (mpMRI), including multifrequency magnetic resonance elastography (MRE) and apparent diffusion coefficient (ADC) measurements, to ex vivo livers from healthy male rats (13.6±1.6 weeks) at room temperature. Four scenarios including altered liver confinement, tissue crosslinking, and vascular fluid viscosity were investigated with mpMRI at different portal pressure levels (0-17.5 cmH2O). Our experiments demonstrated that, with increasing portal pressure, rat livers showed higher water content, water diffusivity, and increased vessel sizes quantified by the vessel tissue volume fraction (VTVF). These effects were most pronounced in native, unconfined livers (VTVF: 300±120%, p<0.05, ADC: 88±29%, p<0.01), while still significant under confinement (confined: VTVF: 53±32%, p<0.01, ADC: 28±19%, p<0.05; confined-fixed: VTVF: 52±20%, p<0.001, ADC: 11±2%, p<0.01; confined-viscous: VTVF: 210±110%, p<0.01, ADC: 26±9%, p<0.001). Softening with elevated portal pressure (-12±5, p<0.05) occurred regardless of confinement and fixation. However, the liver stiffened when exposed to a more viscous inflow fluid (11±4%, p<0.001). Taken together, our results elucidate the complex relationship between macroscopic-biophysical parameters of liver tissue measured by mpMRI and vascular-fluid properties. Influenced by portal pressure, vascular permeability, and matrix crosslinking, liver stiffness is sensitive to intrinsic poroelastic properties, which, alongside vascular architecture and water diffusivity, may aid in the differential diagnosis of liver disease. STATEMENT OF SIGNIFICANCE: Using highly controllable ex vivo rat liver phantoms, hepatic biophysical properties such as tissue-vascular structure, stiffness, and water diffusivity were investigated using multiparametric MRI including multifrequency magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI). Through elaborate tuning of the experimental conditions such as the static portal pressure, flow viscosity, amount and distribution of fluid content in the liver, we identified the contributions of the fluid component to the overall imaging-based biophysical properties of the liver. Our finding demonstrated the sensitivity of liver stiffness to the hepatic poroelastic properties, which may aid in the differential diagnosis of liver diseases.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatias , Masculino , Animais , Ratos , Pressão na Veia Porta , Fígado/diagnóstico por imagem , Fígado/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Hepatopatias/patologia , Água , Imageamento por Ressonância Magnética/métodos
17.
Insights Imaging ; 14(1): 89, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198348

RESUMO

BACKGROUND: To investigate the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE). METHODS: This prospective study included 121 patients with 124 HCCs as training cohort, and validation cohort included 33 HCCs. They all underwent preoperative conventional magnetic resonance imaging (MRI) and tomoelastography based on 3D multifrequency MRE. Viscoelastic parameters of the tumor and liver were quantified as shear wave speed (c, m/s) and loss angle (φ, rad), representing stiffness and fluidity, respectively. Five MRI features were evaluated. Multivariate logistic regression analyses were used to determine predictors of proliferative HCC to construct corresponding nomograms. RESULTS: In training cohort, model 1 (Combining cirrhosis, hepatitis virus, rim APHE, peritumoral enhancement, and tumor margin) yielded an area under the curve (AUC), sensitivity, specificity, accuracy of 0.72, 58.73%,78.69%, 67.74%, respectively. When adding MRE properties (tumor c and tumor φ), established model 2, the AUC increased to 0.81 (95% CI 0.72-0.87), with sensitivity, specificity, accuracy of 71.43%, 81.97%, 75%, respectively. The C-index of nomogram of model 2 was 0.81, showing good performance for proliferative HCC. Therefore, integrating tumor c and tumor φ can significantly improve the performance of preoperative diagnosis of proliferative HCC (AUC increased from 0.72 to 0.81, p = 0.012). The same finding was observed in the validation cohort, with AUC increasing from 0.62 to 0.77 (p = 0.021). CONCLUSIONS: Proliferative HCC exhibits low stiffness and high fluidity. Adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC. CRITICAL RELEVANCE STATEMENT: We investigated the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE), and find that adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC.

18.
Quant Imaging Med Surg ; 13(5): 2895-2906, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179925

RESUMO

Background: Conventional magnetic resonance enterography is limited in differentiating active inflammation and fibrosis in lesions of Crohn's disease (CD), thus providing a restricted basis for therapeutic decision making. Magnetic resonance elastography (MRE) is an emerging imaging tool that differentiates soft tissues on the basis of their viscoelastic properties. The aim of this study was to demonstrate the feasibility of MRE in assessing the viscoelastic properties of small bowel samples and quantifying differences in viscoelastic properties between healthy ileum and ileum affected by CD. Methods: Twelve patients (median age: 48 years) were prospectively enrolled in this study between September 2019 and January 2021. Patients of the study group (n=7) underwent surgery for terminal ileal CD, while patients of the control group (n=5) underwent segmental resection of healthy ileum. MRE of ileal tissue samples of surgical specimens from both groups was performed in a compact tabletop MRI scanner. Penetration rate (a in m/s) and shear wave speed (c in m/s) were determined as markers of viscosity and stiffness for vibration frequencies f of 1,000, 1,500, 2,000, 2,500, and 3,000 Hz. Additionally, damping ratio γ was deduced, and frequency-independent viscoelastic parameters were calculated using the viscoelastic spring-pot model. Results: Penetration rate a was significantly lower in CD-affected ileum compared to healthy ileum for all vibration frequencies (P<0.05). Consistently, damping ratio γ was higher in CD-affected ileum, averaged over all frequencies (healthy: 0.58±0.12, CD: 1.04±0.55, P=0.03), as well as at 1,000 and 1,500 Hz individually (P<0.05). Spring-pot-derived viscosity parameter η was also significantly reduced in CD-affected tissue (2.62±1.37 versus 10.60±12.60 Pa·s, P=0.02). No significant difference was found for shear wave speed c between healthy and diseased tissue at any frequency (P>0.05). Conclusions: MRE of surgical small bowel specimens is feasible, allowing determination of viscoelastic properties and reliable quantification of differences in viscoelastic properties between healthy and CD-affected ileum. Thus, the results presented here are an important prerequisite for future studies investigating comprehensive MRE mapping and exact histopathological correlation including characterization and quantification of inflammation and fibrosis in CD.

19.
Invest Radiol ; 58(8): 578-586, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897804

RESUMO

ABSTRACT: The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias , Humanos , Técnicas de Imagem por Elasticidade/métodos , Neoplasias/diagnóstico por imagem
20.
Int J Biol Macromol ; 230: 123214, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634800

RESUMO

It remains uncertain how brain glycosaminoglycans (GAGs) contribute to the progression of inflammatory disorders like multiple sclerosis (MS). We investigated here neuroinflammation-mediated changes in GAG composition and metabolism using the mouse model of experimental autoimmune encephalomyelitis (EAE) and sham-immunized mice as controls. Cerebellum, mid- and forebrain at different EAE phases were investigated using gene expression analysis (microarray and RT-qPCR) as well as HPLC quantification of CS and hyaluronic acid (HA). The cerebellum was the most affected brain region showing a downregulation of Bcan, Cspg5, and an upregulation of Dse, Gusb, Hexb, Dcn and Has2 at peak EAE. Upregulation of genes involved in GAG degradation as well as synthesis of HA and decorin persisted from onset to peak, and diminished at remission, suggesting a severity-related decrease in CS and increments in HA. Relative disaccharide quantification confirmed a 3.6 % reduction of CS-4S at peak and a normalization during remission, while HA increased in both phases by 26.1 % and 17.6 %, respectively. Early inflammatory processes led to altered GAG metabolism in early EAE stages and subsequent partially reversible changes in CS-4S and in HA. Targeting early modifications in CS could potentially mitigate progression of EAE/MS.


Assuntos
Encefalite , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Ácido Hialurônico/farmacologia , Glicosaminoglicanos/metabolismo , Encefalomielite Autoimune Experimental/genética , Sulfatos de Condroitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...