Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 173(2): 499-514.e23, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576454

RESUMO

Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.


Assuntos
Aneuploidia , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Mapeamento Cromossômico , Cromossomos/genética , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Biblioteca Gênica , Genômica , Humanos , Queratinas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oncogenes , Fases de Leitura Aberta/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
G3 (Bethesda) ; 6(9): 2781-90, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27402361

RESUMO

Genetic screens are invaluable tools for dissection of biological phenomena. Optimization of such screens to enhance discovery of candidate genes and minimize false positives is thus a critical aim. Here, we report several sources of error common to pooled genetic screening techniques used in mammalian cell culture systems, and demonstrate methods to eliminate these errors. We find that reverse transcriptase-mediated recombination during retroviral replication can lead to uncoupling of molecular tags, such as DNA barcodes (BCs), from their associated library elements, leading to chimeric proviral genomes in which BCs are paired to incorrect ORFs, shRNAs, etc This effect depends on the length of homologous sequence between unique elements, and can be minimized with careful vector design. Furthermore, we report that residual plasmid DNA from viral packaging procedures can contaminate transduced cells. These plasmids serve as additional copies of the PCR template during library amplification, resulting in substantial inaccuracies in measurement of initial reference populations for screen normalization. The overabundance of template in some samples causes an imbalance between PCR cycles of contaminated and uncontaminated samples, which results in a systematic artifactual depletion of GC-rich library elements. Elimination of contaminating plasmid DNA using the bacterial endonuclease Benzonase can restore faithful measurements of template abundance and minimize GC bias.


Assuntos
Código de Barras de DNA Taxonômico/normas , Testes Genéticos/normas , Mamíferos/genética , Animais , Técnicas de Cultura de Células/normas , Vetores Genéticos , Genoma , Plasmídeos/genética , Reação em Cadeia da Polimerase/normas , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...