Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioinform ; 3: 1260486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131007

RESUMO

Ancient DNA is highly degraded, resulting in very short sequences. Reads generated with modern high-throughput sequencing machines are generally longer than ancient DNA molecules, therefore the reads often contain some portion of the sequencing adaptors. It is crucial to remove those adaptors, as they can interfere with downstream analysis. Furthermore, overlapping portions when DNA has been read forward and backward (paired-end) can be merged to correct sequencing errors and improve read quality. Several tools have been developed for adapter trimming and read merging, however, no one has attempted to evaluate their accuracy and evaluate their potential impact on downstream analyses. Through the simulation of sequencing data, seven commonly used tools were analyzed in their ability to reconstruct ancient DNA sequences through read merging. The analyzed tools exhibit notable differences in their abilities to correct sequence errors and identify the correct read overlap, but the most substantial difference is observed in their ability to calculate quality scores for merged bases. Selecting the most appropriate tool for a given project depends on several factors, although some tools such as fastp have some shortcomings, whereas others like leeHom outperform the other tools in most aspects. While the choice of tool did not result in a measurable difference when analyzing population genetics using principal component analysis, it is important to note that downstream analyses that are sensitive to wrongly merged reads or that rely on quality scores can be significantly impacted by the choice of tool.

2.
Bioinform Adv ; 3(1): vbad151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901344

RESUMO

Motivation: Allergy is a pathological immune reaction towards innocuous protein antigens. Although only a narrow fraction of plant or animal proteins induce allergy, atopic disorders affect millions of children and adults and cost billions in healthcare systems worldwide. In silico predictors can aid in the development of more innocuous food sources. Previous allergenicity predictors used sequence similarity, common structural domains, and amino acid physicochemical features. However, these predictors strongly rely on sequence similarity to known allergens and fail to predict protein allergenicity accurately when similarity diminishes. Results: To overcome these limitations, we collected allergens from AllergenOnline, a curated database of IgE-inducing allergens, carefully removed allergen redundancy with a novel protein partitioning pipeline, and developed a new allergen prediction method, introducing MHC presentation propensity as a novel feature. NetAllergen outperformed a sequence similarity-based BLAST baseline approach, and previous allergenicity predictor AlgPred 2 when similarity to known allergens is limited. Availability and implementation: The web service NetAllergen and the datasets are available at https://services.healthtech.dtu.dk/services/NetAllergen-1.0/.

3.
PLoS Comput Biol ; 19(6): e1011148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285390

RESUMO

Current mitochondrial DNA (mtDNA) haplogroup classification tools map reads to a single reference genome and perform inference based on the detected mutations to this reference. This approach biases haplogroup assignments towards the reference and prohibits accurate calculations of the uncertainty in assignment. We present HaploCart, a probabilistic mtDNA haplogroup classifier which uses a pangenomic reference graph framework together with principles of Bayesian inference. We demonstrate that our approach significantly outperforms available tools by being more robust to lower coverage or incomplete consensus sequences and producing phylogenetically-aware confidence scores that are unbiased towards any haplogroup. HaploCart is available both as a command-line tool and through a user-friendly web interface. The C++ program accepts as input consensus FASTA, FASTQ, or GAM files, and outputs a text file with the haplogroup assignments of the samples along with the level of confidence in the assignments. Our work considerably reduces the amount of data required to obtain a confident mitochondrial haplogroup assignment.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , DNA Mitocondrial/genética , Teorema de Bayes , Haplótipos/genética , Mitocôndrias/genética , Mutação
4.
Protein Sci ; 32(1): e4527, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461907

RESUMO

Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein-protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction.


Assuntos
Proteínas , Software , Proteínas/química , Mutação , Entropia , Estabilidade Proteica
5.
PLoS Genet ; 16(12): e1009231, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332384

RESUMO

PURPOSE: Historically, cancer predisposition syndromes (CPSs) were rarely established for children with cancer. This nationwide, population-based study investigated how frequently children with cancer had or were likely to have a CPS. METHODS: Children (0-17 years) in Denmark with newly diagnosed cancer were invited to participate in whole-genome sequencing of germline DNA. Suspicion of CPS was assessed according to Jongmans'/McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) criteria and familial cancer diagnoses were verified using population-based registries. RESULTS: 198 of 235 (84.3%) eligible patients participated, of whom 94/198 (47.5%) carried pathogenic variants (PVs) in a CPS gene or had clinical features indicating CPS. Twenty-nine of 198 (14.6%) patients harbored a CPS, of whom 21/198 (10.6%) harbored a childhood-onset and 9/198 (4.5%) an adult-onset CPS. In addition, 23/198 (11.6%) patients carried a PV associated with biallelic CPS. Seven of the 54 (12.9%) patients carried two or more variants in different CPS genes. Seventy of 198 (35.4%) patients fulfilled the Jongmans' and/or MIPOGG criteria indicating an underlying CPS, including two of the 9 (22.2%) patients with an adult-onset CPS versus 18 of the 21 (85.7%) patients with a childhood-onset CPS (p = 0.0022), eight of the additional 23 (34.8%) patients with a heterozygous PV associated with biallelic CPS, and 42 patients without PVs. Children with a central nervous system (CNS) tumor had family members with CNS tumors more frequently than patients with other cancers (11/44, p = 0.04), but 42 of 44 (95.5%) cases did not have a PV in a CPS gene. CONCLUSION: These results demonstrate the value of systematically screening pediatric cancer patients for CPSs and indicate that a higher proportion of childhood cancers may be linked to predisposing germline variants than previously supposed.


Assuntos
Testes Genéticos/estatística & dados numéricos , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/epidemiologia , Sequenciamento Completo do Genoma/estatística & dados numéricos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Masculino , Taxa de Mutação , Síndromes Neoplásicas Hereditárias/genética
6.
Nucleic Acids Res ; 34(Web Server issue): W84-8, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16845115

RESUMO

FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB) for structures of homologous proteins. The results are displayed both as an annotated sequence alignment, where the user-provided annotations as well as the sequence conservation between the query and the target sequence are displayed, and also as a publication-quality image of the 3D protein structure with the selected features and sequence conservation enhanced. The results are also returned in a readily parsable text format as well as a PyMol (http://pymol.sourceforge.net/) script file, which allows the user to easily modify the protein structure image to suit a specific purpose. FeatureMap3D can also be used without sequence annotation, to evaluate the quality of the alignment of the input sequences to the most homologous structures in the PDB, through the sequence conservation colored 3D structure visualization tool. FeatureMap3D is available at: http://www.cbs.dtu.dk/services/FeatureMap3D/.


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Homologia de Sequência de Aminoácidos , Software , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Aminoácidos/química , Gráficos por Computador , Sequência Conservada , Éxons , Internet , Modelos Moleculares , Proteínas/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...