Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(suppl 3): e20230722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126384

RESUMO

Understanding the influence of soil-forming factors and processes in ornithogenic soils is important to predict impacts of climate change on Antarctic ecosystems. Herein, we analyzed the soil-landscape interplays and development of ornithogenic soils at Harmony Point (HP), Nelson Island. We collected, described, and classified 24 soil profiles, combined with vegetation and landforms descriptions. Geoprocessing techniques were employed for mapping. Soil physical, chemical, geochemical, and mineralogical analyses were applied. Patterned ground, "Ornithogenic"/Typic Gelorthent, and moss carpets were the dominant landform, soil and vegetation classes, respectively. Soils from rocky outcrops were more structured, acidic, with higher organic carbon, organometallic complexes, and secondary phosphate minerals, due to former bird influence. Soils from cryoplanated platforms presented higher water pH, base saturation, clay content, and secondary silicate minerals. Soils from marine terraces presented high exchangeable bases, phosphorous, and amorphous phosphate minerals. Soil chemical weathering is enhanced by ornithogenesis and widespread in HP. Besides ornithogenesis, organic matter accumulation, cryoturbation, and cryoclastic processes are also important to pedogenesis of ornithogenic soils. The soils of the cryoplanated platforms exhibited a gradient of pedogenetic development corresponding to increasing biota influence and distance from glacier. In contrast, soils of rocky outcrops were more developed even close to the glacier, due to ornithogenesis.


Assuntos
Ecossistema , Solo , Regiões Antárticas , Solo/química , Minerais , Fosfatos
2.
An Acad Bras Cienc ; 95(suppl 3): e20210692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585979

RESUMO

Active layer and permafrost are important indicators of climate changes in periglacial areas of Antarctica, and the soil thermal regime of Maritime Antarctica is sensitive to the current warming trend. This research aimed to characterize the active layer thermal regime of a patterned ground located at an upper marine terrace in Half Moon Island, during 2015-2018. Temperature and moisture sensors were installed at different soil depths, combined with air temperature, collecting hourly data. Statistical analysis was applied to describe the soil thermal regime and estimate active layer thickness. The thermal regime of the studied soil was typical of periglacial environment, with high variability in temperature and water content in the summer, resulting in frequent freeze-thaw cycles. We detected dominant freezing conditions, whereas soil temperatures increased, and the period of high soil moisture content lasted longer over the years. Active layer thickness varied between the years, reaching a maximum depth in 2018. Permafrost degradation affects soil drainage and triggers erosion in the upper marine terrace, where permafrost occurrence is unlikely. Longer monitoring periods are necessary for a detailed understanding on how current climatic and geomorphic conditions affect the unstable permafrost of low-lying areas of Antarctica (marine terraces).


Assuntos
Pergelissolo , Regiões Antárticas , Solo , Água , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...