Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 444(Pt B): 130423, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427359

RESUMO

Among aquatic ecosystems, bays are ubiquitously contaminated with microplastics (MPs, size <5 mm), but a comprehensive understanding of their pollution characterization in Chinese Bays is largely elusive. The current study aims to systematically highlight factors intricating MP contamination as well as their geographic distribution, interactions, risk evaluation, and abundance prediction in bays. MPs' abundance was varied in different bays, at concentrations ranging between 0.26 ± 0.14-89, 500 ± 20, 600 items/m3 in water, 15 ± 6-6433.5 items/kg dry weight in sediment and 0.21 ± 0.10-103.5 items/individual in biota. Redundancy analysis, Permannova, and GeoDetector model revealed that the sampling and extraction/identification methods, and geographical locations were the major drivers affecting MP distribution and characteristics. The Mantel test highlighted that the MP characteristics changed with geographic distance, higher in water than that in sediment and biota. ANOSIM results showed that the different environmental media exhibit significant differences in MP characteristics (e.g., color, shape, and polymer). The ARIMA model predicted that Sanggou Bay and Hangzhou Bay have a higher potential for significantly increasing MP contamination in the future. The highest hazard index (HI) values for water, sediment, and biota were respectively reported at Jiaozhou Bay (18,844.16), Bohai Bay (11,485.37), and Dongshan Bay (48,485.11). The highest values for the ecological risk index (RI) in water, sediment, and biota were detected at Beibu Gulf (6,129,559.02), Haikou Bay (2229.14), and Dongshan Bay (561,563.05), respectively. Overall, this framework can be used at different scales and in different environments, which makes it useful for understanding and controlling MP pollution in the ecosystem.


Assuntos
Baías , Microplásticos , Plásticos , Ecossistema , Água , China
2.
Sci Total Environ ; 830: 154720, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337880

RESUMO

Microplastic pollution and associated impacts in the aquatic environment are spreading at an alarming rate worldwide. Plastic waste is increasing in the environment, and microplastics (MPs) are becoming a growing issue because they serve as vectors for pathogen transmission. This is the first comprehensive review that specifically addresses MPs as a source and vector of pathogenic bacteria, mainly associated with genera Vibrio, Pseudomonas, Acinetobacter, and so on, which are discovered to be more abundant on the aquatic plastisphere than that in the surrounding wastewater, freshwater, and marine water ecosystems. The horizontal gene transfer, chemotaxis, and co-selection and cross-selection could be the potential mechanism involved in the enrichment and dissemination of bacterial pathogens through the aquatic plastisphere. Further, bacterial pathogens through aquatic plastisphere can cause various ecological and human health impacts such as disrupted food chain, oxidative stress, tissue damages, disease transmission, microbial dysbiosis, metabolic disorders, among others. Last but not least, future research directions are also described to find answers to the challenging questions about bacterial pathogens in the aquatic plastisphere to ensure the integrity and safety of ecological and human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Bactérias/genética , Ecossistema , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA