Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurosci ; 28(1-2): 55-64, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34733055

RESUMO

BACKGROUND: Alzheimer's disease (AD), a prevalent neurodegenerative disease with progressive dementia and neurotransmission (NT)-dysfunction-related complications in older adults, is known to be caused by abnormal Amyloid-ß (Aß) peptide and associated amyloid plaques in the brain. Drugs to cure AD are not in sight. Two major excitatory neurotransmitters, glutamate (Glu) and acetylcholine (ACh), and their signaling systems are implicated in AD. OBJECTIVE: To determine the effect of various NT-altering compounds including fenobam, quisqualic acid, and dimethyl sulfoxide (DMSO) in the protection against Aß toxicity. Further, to identify the potential mechanism through which the protection happens. METHODS: The well-known C. elegans AD model, CL4176, in which human Aß expression is turned on upon a temperature shift to 25 °C that leads to paralysis, was screened for protection/delay in paralysis because of Αß toxicity. While screening the compounds, dimethyl sulfoxide (DMSO), a universal solvent used to solubilize compounds, was identified to provide protection. Aldicarb and levamisole assays were performed to identify the contribution of ACh neurotransmission in Αß toxicity protection by DMSO. RESULTS: One percent and two percent DMSO delayed paralysis by 48% and 90%, respectively. DMSO was dominant over one of the Glu-NT pathway-related compounds, Fenobam-Group I mGluR antagonist. But DMSO provided only 30% to 50% protection against Quisqualic acid, the Glu-agonist. DMSO (2%) delayed ACh-NT, both presynaptic acetylcholine esterase inhibitor (AchEi)-aldicarb and postsynaptic-iAChR-agonst-levamisole induced paralysis, by ∼70% in CL4176. DMSO seems to be altering Ca2+ ion permeability essential for NT as EthyleneDiamine Tetra-Acetic acid (EDTA) and DMSO provided similar aldicarb resistance either combined or alone in wildtype worms. But postsynaptic Ca2+ depletion by EDTA could reverse DMSO-induced levamisole hypersensitivity. Surprisingly, the absence of FOrkhead boXO (FOXO) transcription factor homolog, daf-16 (loss-of-function mutant), a critical transcription factor in the reduced IIS-mediated longevity in C. elegans, abolished DMSO-mediated AldR. CONCLUSION: DMSO and Fenobam protect against Aß toxicity through modulation of NT.

2.
Neurosci Lett ; 746: 135666, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33493646

RESUMO

Glutamate (Glu) and Acetylcholine (ACh), are excitatory neurotransmitters, acting through ionotropic (iR) and metabotropic receptors (mR). Importantly, both neurotransmitters and their signalling are impaired in the prevalent neurodegenerative disease-Alzheimer disease (AD). Glu and its signalling cascade's influence on ACh-neurotransmission (NT) are sparsely understood. The mGluRs coupled to G-protein signalling acting through PI3K cascade (GrpI) or inhibition of adenylate cyclase-cAMP cascade (GrpII and GrpIII) brings about long-lasting structural/functional changes. These complexities are challenging to decipher. Here, we report that human/mouse mGluRs when compared with their Caenorhabditis elegans homologs, MGL-1-3 showed overall of homology of ∼31-39 %. Phylogeneitc analysis revealed homology of MGL-2 to GrpI, MGL-3 with Grp1 &II and GRM6 of GrpIII and MGL-1, a low homology that falls between GrpI & GrpII. Then, alteration of ACh-NT in C. elegans loss-of-function mutants of mgl-1, mgl-2, mgl-3, PI3K (age-1) and iGluR (NMDA)(nmr-1) was estimated by well-established acute aldicarb (Ald), that increases ACh at synapse, and levamisole (Lev) (postsynaptic activation of levamisole sensitive iAChR) induced time-dependent paralysis assays. Surprisingly, all of them were hypersensitive to Ald and Lev compared to wildtype (in percentage), namely, mgl-1 -17, 54; mgl-2 - 7.2, 24; mgl-3 -52, 64; age-1 - 27, 32; nmr-1- 24, 48; respectively. Of the three, mgl-3 contributes to maximal overall acceleration of ACh-NT. Adenylate cyclase, acy-1 gain-of-function mutant showed less hypersensitivity, Ald - 7% and Lev- 25 %. Together, Glu receptors and signalling cascades are altering ACh-NT permanently, thus establishing the interplay between them thereby provide potential drug targets to be considered for AD.


Assuntos
Acetilcolina/metabolismo , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Humanos , Camundongos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...