Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Cell Biochem ; 471(1-2): 41-50, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529498

RESUMO

Diabetic nephropathy and cardiomyopathy are two major causes of mortality among patients with diabetes mellitus (DM). Since current diabetic medications are associated with various side effects, the naturally occurring plant-derived compounds are in demand. Bioflavonoids originating from vegetables and medicinal plants have beneficial effects on diabetes by improving glycemic control, lipid metabolism, and anti-oxidant status. The present study is focused on the effect of rutin against alloxan induced diabetic nephropathy and cardiomyopathy. Male albino Wistar rats were divided into four groups, each of six rats. Group I control rats received 0.9% saline as a single dose intraperitoneally. Group II rats were induced diabetes with a single dose of alloxan monohydrate (150 mg/kg body weight in 0.9% saline) intraperitoneally. Group III rats received 0.28 M of NH4Cl in drinking water for 3 days for the experimental induction of metabolic acidosis. Group IV rats were injected with a single dose of alloxan monohydrate (150 mg/kg bodyweight) and administered rutin hydrate (100 mg/kg) for a period of 4 weeks by oral gavage. Administration of rutin prevented urinary ketone body formation and decreased serum creatinine and urea levels in alloxan induced diabetic rats. Rutin supplementation reduced the levels of serum triglycerides and cholesterol in diabetic rats. Gene expression profiling of metabolic acidosis related genes (AQP2, AQP3 and V2R) and also histopathological results demonstrated the protective effect of rutin against diabetic ketoacidodis and fibrosis. The results of the present study revealed rutin administration prevents the progression of diabetic nephropathy and cardiomyopathy through amelioration of fibrosis and metabolic acidosis.


Assuntos
Acidose/tratamento farmacológico , Aloxano/toxicidade , Cardiomiopatias/complicações , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/complicações , Fibrose/tratamento farmacológico , Rutina/farmacologia , Acidose/etiologia , Acidose/patologia , Animais , Antioxidantes/farmacologia , Glicemia/análise , Cardiomiopatias/induzido quimicamente , Nefropatias Diabéticas/induzido quimicamente , Fibrose/etiologia , Fibrose/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
2.
J Sci Food Agric ; 99(13): 6066-6075, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31228262

RESUMO

BACKGROUND: Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied. RESULTS: Animals treated with microalgal biomass showed significantly increased serum HDL levels (P < 0.05) and reduced oxidative stress markers with a concomitant decrease in urea and creatinine levels. Oral supplementation of microalgal biomass did not show any toxicity or damage in any major organs. The mRNA expression of PUFA genes was significantly downregulated (P < 0.05) and antioxidant genes were upregulated. Furthermore, the mRNA expression of pro-inflammatory markers was significantly downregulated (P < 0.05) and anti-inflammatory markers were upregulated. Oral supplementation of microalgal biomass improved DHA status in brain and liver. CONCLUSION: The present study demonstrated that Isochrysis sp. can be used as a safe, alternative food supplement for ω-3 fatty acids. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Haptófitas/química , Lipídeos/sangue , Microalgas/química , Animais , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Fígado/metabolismo , Masculino , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Ratos , Ratos Wistar
3.
Biomed Pharmacother ; 108: 1338-1346, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372836

RESUMO

Diabetic nephropathy (DN) is considered as one of the major microvascular complications of diabetes mellitus (DM) which leads to end stage renal disease (ESRD). Even though existing therapeutic options are effective in decreasing albuminuria, drugs targeting the preservation of GFR and prevention of ESRD may provide better strategy for the treatment. Since metabolic disorders are multifactorial, poly-herbal medications, and drug-herbal combination are in demand. Therefore, the present work is focused on the combinatorial renoprotective effect of rutin and ramipril on alloxan induced DN in experimental rats. Male Wistar rats were divided into five groups, group I-control, group II-diabetic rats, group III-diabetic rats treated with ramipril, group IV-diabetic rats treated with rutin, group V-diabetic rats treated with ramipril and rutin for a period of six weeks. Results revealed administration of alloxan induced hyperglycemia and alteration in antioxidant profile. However, combination of a bioflavonoid with an Angiotensin converting enzyme (ACE) inhibitor administration restored the antioxidant status in experimental DN rats. Over-expression of ACE, TGF-ß1 and decreased podocin expression in diabetic rats was significantly reversed in rats administered with both ramipril and rutin. In addition to attentuating oxidative stress and fibrosis, combinatorial therapy significantly down-regulated endoplasmic reticulum stress markers GRP78 and CHOP. Notably, combination of both ramipril and rutin in low doses reduced the side effects than the administration of monotherapy alone. Histopathological results revealed that combinatorial therapy was associated with a reduction in tubulointerstitial injury. The current study contributes the understanding of the multifactorial nature of DN and implies combinatorial treatment of ACE inhibitor with an antioxidant will be a promising therapeutic strategy for DN by their mechanism of action targeting various pathophysiological changes and stress pathways.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Ramipril/administração & dosagem , Rutina/administração & dosagem , Aloxano , Animais , Diabetes Mellitus Experimental/metabolismo , Quimioterapia Combinada , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Masculino , Peptidil Dipeptidase A/genética , Ratos , Ratos Wistar , Fator de Transcrição CHOP/genética , Fator de Crescimento Transformador beta1/genética
4.
Microbiol Res ; 215: 65-75, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30172310

RESUMO

Increased intestinal absorption of oxalate causes hyperoxaluria, a major risk factor for kidney stone disease. Intestinal colonization of recombinant probiotic bacteria expressing oxalate-degrading gene (OxdC) is an effective therapeutic option for recurrent calcium oxalate (CaOx) stone disease. Therefore, we aimed to develop food-grade probiotic L. plantarum secreting OxdC using lactococcal group II intron, Ll.LtrB and evaluate its oxalate degradation ability in vivo. Male Wistar albino rats were divided into four groups. The rats of group I received normal rat chow and drinking water. Groups II, III and IV rats received 5% potassium oxalate containing diet for 28 days. Groups III and IV rats received L. plantarum and food-grade recombinant L. plantarum respectively from 15 to 28 days. Biochemical parameters and crystalluria were analysed in 24 h urine samples. At the end of experimental period, rats were sacrificed; intestine and kidneys were dissected out for colonization studies and histopathological analysis. Herein, we found that the administration of recombinant probiotics significantly reduced the urinary oxalate, calcium, urea, and creatinine levels in rats of group IV compared to group II. Furthermore, colonization studies indicated that recombinant probiotics have gastrointestinal transit and intestinal colonization ability similar to that of wild-type bacteria. In addition, gene expression studies revealed down-regulation of OPN and KIM-1 among group IV rats. Histopathological analysis showed less evidence of nephrocalcinosis in group IV rats. In conclusion, the study demonstrates that food-grade L. plantarum secreting OxdC is capable of degrading intestinal oxalate and thereby prevent CaOx stone formation in experimental rats.


Assuntos
Carboxiliases/genética , Carboxiliases/farmacologia , Hiperoxalúria/tratamento farmacológico , Intestinos/microbiologia , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Oxalatos/metabolismo , Probióticos/farmacologia , Alanina Racemase , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/urina , Oxalato de Cálcio/metabolismo , Carboxiliases/metabolismo , Moléculas de Adesão Celular/genética , Creatinina/urina , Modelos Animais de Doenças , Expressão Gênica , Genes Bacterianos/genética , Instabilidade Genômica , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/prevenção & controle , Hiperoxalúria/urina , Mucosa Intestinal/metabolismo , Íntrons/genética , Rim/metabolismo , Rim/patologia , Cálculos Renais/induzido quimicamente , Cálculos Renais/tratamento farmacológico , Cálculos Renais/prevenção & controle , Cálculos Renais/urina , Masculino , Mutagênese , Nefrocalcinose/patologia , Oxalatos/química , Oxalatos/urina , Ácido Oxálico/metabolismo , Probióticos/administração & dosagem , Probióticos/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Ureia/urina
5.
J. physiol. biochem ; 73(4): 561-573, nov. 2017. tab, ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-178906

RESUMO

Oxalate, a non-essential end product of metabolism, causes hyperoxaluria and eventually calcium oxalate (CaOx) stone disease. Kidney cells exposed to oxalate stress results in generation of reactive oxygen species (ROS) and progression of stone formation. Perturbations in endoplasmic reticulum (ER) result in accumulation of misfolded proteins and Ca2+ ions homeostasis imbalance and serve as a common pathway for various diseases, including kidney disorders. ER stress induces up-regulation of pro-survival protein glucose-regulated protein 78 (GRP78) and pro-apoptotic signaling protein C/EBP homologous protein (CHOP). Since the association of oxalate toxicity and ER stress on renal cell damage is uncertain, the present study is an attempt to elucidate the interaction of GRP78 with oxalate by computational analysis and study the role of ER stress in oxalate-mediated apoptosis in vitro and in vivo. Molecular docking results showed that GRP78-oxalate/CaOx interaction takes place. Oxalate stress significantly up-regulated expression of ER stress markers GRP78 and CHOP both in vitro and in vivo. Exposure of oxalate increased ROS generation and altered antioxidant enzyme activities. N-Acetyl cysteine treatment significantly ameliorated oxalate-mediated oxidative stress and moderately attenuated ER stress marker expression. The result indicates oxalate toxicity initiated oxidative stress-induced ER stress and also activating ER stress mediated apoptosis directly. In addition, the up-regulation of transforming growth factor Beta-1 revealed oxalate may induce kidney fibrosis through ER stress-mediated mechanisms. The present study provide insights into the pathogenic role of oxidative and ER stress by oxalate exposure in the formation of calcium oxalate stone


Assuntos
Animais , Ratos , Apoptose , Estresse do Retículo Endoplasmático , Cálculos Renais/patologia , Oxalatos/toxicidade , Linhagem Celular , Oxalato de Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...