Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Membranes (Basel) ; 9(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671843

RESUMO

The use of conventional membrane adsorbers such as radial flow devices is largely restricted to flow-through applications, such as virus and endotoxin removal, as they fail to give acceptable resolution in bind-and-elute separations. Laterally-fed membrane chromatography or LFMC devices have been specifically developed to combine high-speed with high-resolution. In this study, an LFMC device containing a stack of strong cation exchange membranes was compared with an equivalent resin packed column. Preliminary characterization experiments showed that the LFMC device had a significantly greater number of theoretical plates per metre than the column. These devices were used to separate a ternary model protein mixture consisting of ovalbumin, conalbumin and lysozyme. The resolution obtained with the LFMC device was better than that obtained with the column. For instance, the LFMC device could resolve lysozyme dimer from lysozyme monomer, which was not possible using the column. In addition, the LFMC device could be operated at lower pressure and at significantly higher flow rates. The devices were then compared based on an application case study, i.e., preparative separation of monoclonal antibody charge variants. The LFMC device gave significantly better separation of these variants than the column.

2.
J Pharm Anal ; 8(3): 187-193, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29922488

RESUMO

Enrichment and immobilization of analytes by chemical bonding or physical adsorption is typically the first step in many commonly used analytical techniques. In this paper, we discuss a permeation drag based technique as an alternative approach for carrying out location-specific immobilization of macromolecular analytes. Fluorescein isothiocyanate (FITC) labeled macromolecules and their complexes were enriched near the surface of ultrafiltration membranes and detected by direct visual observation and fluorescence imaging. The level of macromolecule enrichment at the immobilization sites could be controlled by manipulating the filtration rate and thereby the magnitude of permeation drag. Higher enrichment as indicated by higher fluorescence intensity was observed at higher filtration rates. Also, larger macromolecules were more easily enriched. The feasibility of using this technique for detecting immunocomplexes was demonstrated by carrying out experiments with FITC labeled bovine serum albumin (FITC-BSA) and its corresponding antibody. This permeation drag based enrichment technique could potentially be developed further to suit a range of analytical applications involving more sophisticated detection methods.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29232608

RESUMO

Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Anticorpos Monoclonais/análise , Humanos , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Membranas Artificiais , Cloreto de Sódio
4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-700371

RESUMO

Enrichment and immobilization of analytes by chemical bonding or physical adsorption is typically the first step in many commonly used analytical techniques. In this paper, we discuss a permeation drag based technique as an alternative approach for carrying out location-specific immobilization of macro-molecular analytes. Fluorescein isothiocyanate (FITC) labeled macromolecules and their complexes were enriched near the surface of ultrafiltration membranes and detected by direct visual observation and fluorescence imaging. The level of macromolecule enrichment at the immobilization sites could be controlled by manipulating the filtration rate and thereby the magnitude of permeation drag. Higher enrichment as indicated by higher fluorescence intensity was observed at higher filtration rates. Also, larger macromolecules were more easily enriched. The feasibility of using this technique for detecting immunocomplexes was demonstrated by carrying out experiments with FITC labeled bovine serum al-bumin (FITC-BSA) and its corresponding antibody. This permeation drag based enrichment technique could potentially be developed further to suit a range of analytical applications involving more sophis-ticated detection methods.

5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1055-1056: 158-164, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28477519

RESUMO

Cation exchange (CEX) chromatography is widely used for large-scale separation of monoclonal antibody (mAb) aggregates. The aggregates bind more strongly to CEX media and hence elute after the monomeric mAb in a salt gradient. However, monomer-aggregate resolution that is typically obtained is poor, which results in low product recovery. In the current study we address this challenge through the use of cation-exchange laterally-fed membrane chromatography (LFMC). Three different LFMC devices, each containing a bed of strong cation-exchange (S) membranes were used for preparative-scale removal of mAb aggregates. Trastuzumab (IgG1) biosimilar derived from human embryonic kidney 293 (293) cells was used as the primary model mAb in our study. The other mAbs investigated were Chinese hamster ovary (CHO) cell line derived Alemtuzumab (Campath-1H) and a heavy chain chimeric mAb EG2-hFc. In each of these case-studies, aggregates were well-resolved from the respective monomer. The separated and collected monomer and aggregate fractions were analyzed using techniques such as hydrophobic interaction membrane chromatography (HIMC), native polyacrylamide gel electrophoresis (or PAGE), and size-exclusion high-performance liquid chromatography (SE-HPLC). The high efficiency of separation obtained in each case was due to a combination of the small membrane pore size (3-5µm), and the use of LFMC technology, which has been shown to be suitable for high-resolution, multi-component protein separations. Also, the LFMC based separation processes reported in this study were more than an order of magnitude faster than equivalent resin-based, cation exchange chromatography.


Assuntos
Anticorpos Monoclonais Humanizados/isolamento & purificação , Anticorpos Monoclonais/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Trastuzumab/isolamento & purificação , Alemtuzumab , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Células CHO , Resinas de Troca de Cátion/química , Cricetinae , Cricetulus , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Trastuzumab/química
6.
Biotechnol Prog ; 33(1): 133-139, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690284

RESUMO

Heterologous overexpression of genes in Escherichia coli has made it possible to obtain high titers of recombinant proteins. However, this can result in the formation of aggregated protein particles known as 'inclusion bodies'. Protein sequestered as inclusion body is inactive and needs to be converted back to its functional form by refolding using appropriate techniques. In the current study inclusion bodies of the enzyme aminoglycoside nucleotidyl transferase (or ANT(2″)-Ia) were first solubilized in urea and subsequently subjected to thermal cycling under controlled conditions as part of the refolding strategy. Thermal cycling led to disaggregation of the individual protein chains and simultaneously refolding the released protein molecules to their native state. The optimum condition was identified as 10-80°C thermal cycling at 3°C s-1 for 2 h. Enzyme activity measurements showed that thermal cycling under optimized conditions resulted in 257% activity recovery when compared with nonrefolded protein. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:133-139, 2017.


Assuntos
Enzimas/isolamento & purificação , Corpos de Inclusão/química , Proteínas Recombinantes/isolamento & purificação , Enzimas/química , Escherichia coli , Dobramento de Proteína , Proteínas Recombinantes/química , Solubilidade
7.
J Pharm Sci ; 103(3): 870-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24549731

RESUMO

Non-native oligomeric forms of biopharmaceutical proteins are therapeutically inactive, and potentially toxic and immunogenic, and therefore undesirable in pharmaceutical formulations. Immunoglobulin G class of antibodies are known to form stable nonnative oligomers through Fab-Fab interactions. In this paper, we investigate thermal-cycling as a technique for disaggregating antibody oligomers. Aggregate containing monoclonal antibody (mAb) samples were exposed to rapid heating and cooling cycles in a thermal-cycler. The heating phase of the thermal-cycle resulted in partial unfolding of the Fab domain, leading to the release of monomer from the oligomer complexes, whereas the rapid cooling that followed led to refolding and minimized the probability of protein reaggregation. The extent of mAb oligomer disaggregation was determined by size-exclusion chromatography and hydrophobic interaction membrane chromatography, whereas protein refolding was assessed by circular dichroism spectroscopy. The thermal-cycling technique in addition to being suitable for disaggregating protein oligomer samples could also potentially be useful for studying the mechanisms of protein aggregation and disaggregation.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Modelos Moleculares , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Antígenos CD4/química , Dicroísmo Circular , Dimerização , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Temperatura Alta , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Tamanho da Partícula , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade
8.
Biotechnol Bioeng ; 111(6): 1139-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24449405

RESUMO

Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos Monoclonais/genética , Cromatografia de Afinidade/métodos , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Anticorpos de Cadeia Única/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...