Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(14): 3644-3654, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38989513

RESUMO

Creatinine, a byproduct of muscle metabolism, is typically filtered by the kidneys. Deviations from normal concentrations of creatinine in human saliva serve as a crucial biomarker for renal diseases. Monitoring these levels becomes particularly essential for individuals undergoing dialysis and those with kidney conditions. This study introduces an innovative disposable point-of-care (PoC) sensor device designed for the prompt detection and continuous monitoring of trace amounts of creatinine. The sensor employs a unique design, featuring a creatinine-imprinted polythiophene matrix combined with niobium oxide nanoparticles. These components are coated onto a screen-printed working electrode. Thorough assessments of creatinine concentrations, spanning from 0 to 1000 nM in a redox solution at pH 7.4 and room temperature, are conducted using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The devised sensor exhibits a sensitivity of 4.614 µA cm-2 nM-1, an impressive trace level limit of detection at 34 pM, and remarkable selectivity for creatinine compared to other analytes found in human saliva, such as glucose, glutamine, urea, tyrosine, etc. Real saliva samples subjected to the sensor reveal a 100% recovery rate. This sensor, characterized by its high sensitivity, cost-effectiveness, selectivity, and reproducibility, holds significant promise for real-time applications in monitoring creatinine levels in individuals with kidney and muscle-related illnesses.

2.
Sci Rep ; 14(1): 7187, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531965

RESUMO

Chemical graph theory, a subfield of graph theory, is used to investigate chemical substances and their characteristics. Chemical graph analysis sheds light on the connection, symmetry, and reactivity of molecules. It supports chemical property prediction, research of molecular reactions, drug development, and understanding of molecular networks. A crucial part of computational chemistry is chemical graph theory, which helps researchers analyze and manipulate chemical structures using graph algorithms and mathematical models. Beryllonitrene , a compound of interest due to its potential applications in various fields, is examined through the lens of graph theory and mathematical modeling. The study involves the calculation and interpretation of topological indices and graph entropy measures, which provide valuable insights into the structural and energetic properties of Beryllonitrene's molecular graph. Logarithmic regression models are employed to establish correlations between these indices, entropy, and other relevant molecular attributes. The results contribute to a deeper understanding of Beryllonitrene's complex characteristics, facilitating its potential applications in diverse scientific and technological domains. In this study, degree-based topological indices TI are determined, as well as the entropy of graphs based on these TI .

3.
Biosens Bioelectron ; 247: 115899, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091897

RESUMO

The growing risk of death associated with kidney dysfunction underlines the requirement for a cost-effective and precise point-of-care (POC) diagnostic tool to identify chronic kidney disease (CKD) at an early stage. This work reports the development of a non-invasive POC diagnostic based on cost-efficient, disposable electrodes and in situ-designed biomimetic nanozymes. The nanozymes are composed of graphitic carbon nitride nanosheets (gCN) and creatinine-imprinted polythiophene nanofibers (miPTh). Microscopic analyses reveal porous nanofibrous surface morphology of biomimetic miPTh/gCN nanozymes. Bulk imprinting and the inclusion of conductive gCN nanosheets drastically reduced the charge transfer resistance and improved the electron exchange kinetics at the nanozyme-electrolyte interface. The electrochemical oxidation of creatinine is studied via cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which exhibit excellent creatinine recognition ability of biomimetic miPTh/gCN nanozyme sensors compared to pristine polymeric or non-imprinted nanozymes. The sensor reveals linear response toward 200-1000 nmol L-1 creatinine, high sensitivity (4.27 µA cm-2 nmol-1 L), sub-nanomolar detection limit (340 pmol L-1), and excellent selectivity over common salivary analytes. To corroborate its real-world utility, the miPTh/gCN nanozyme sensor shows an impressive 94.8% recovery of spiked creatinine concentrations in microliter droplets of human saliva samples. This disposable sensor reveals great potential in the realm of reliable and efficient non-invasive POC diagnostics for healthcare delivery.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Nanofibras , Humanos , Creatinina , Saliva , Biomimética , Eletrodos , Técnicas Eletroquímicas , Limite de Detecção
4.
Heliyon ; 9(10): e20935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916098

RESUMO

Rhodium (III) chloride is a metallic compound characterized by its shiny and silvery-white appearance. It possesses high reflectivity and exhibits excellent resistance to corrosion. This makes it a popular choice for applications such as plating materials in jewelry and other decorative items, imparting a lustrous and reflective surface to the coated objects. Topological indices are numerical parameters employed to characterize the topology of a molecular structure. These indices are derived from the connectivity of atoms within the molecule and serve as predictors for various molecular properties, including reactivity, stability, and solubility. On the other hand, the Shannon entropy of a graph finds extensive applications in network science. It is utilized in the analysis of diverse networks, such as social networks, biological networks, and transportation networks. The Shannon entropy allows for the characterization of a network's topology and structure, aiding in the identification of crucial nodes or structures that play significant roles in network functionality and stability. In this paper, our primary objective is to compute different K-Banhatti indices and employ them to evaluate the entropy measure of Rhodium (III) chloride RhCl3. Additionally, we conducted an examination through linear regression analysis involving various indices and entropies associated with Rhodium chloride. Moreover, we established a correlation between degree-based Banhatti indices and entropies via the line fit method.

5.
Diagnostics (Basel) ; 13(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37238220

RESUMO

In the post-pandemic era, point-of-care (POC) diagnosis of diseases is an important research frontier. Modern portable electrochemical (bio)sensors enable the design of POC diagnostics for the identification of diseases and regular healthcare monitoring. Herein, we present a critical review of the electrochemical creatinine (bio)sensors. These sensors either make use of biological receptors such as enzymes or employ synthetic responsive materials, which provide a sensitive interface for creatinine-specific interactions. The characteristics of different receptors and electrochemical devices are discussed, along with their limitations. The major challenges in the development of affordable and deliverable creatinine diagnostics and the drawbacks of enzymatic and enzymeless electrochemical biosensors are elaborated, especially considering their analytical performance parameters. These revolutionary devices have potential biomedical applications ranging from early POC diagnosis of chronic kidney disease (CKD) and other kidney-related illnesses to routine monitoring of creatinine in elderly and at-risk humans.

6.
Environ Res ; 229: 115861, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062477

RESUMO

Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.


Assuntos
Poluentes Ambientais , Nanoestruturas , Humanos , Águas Residuárias , Bismuto , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...