Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(26): 264001, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30836341

RESUMO

Hypoxia is a characteristic feature of solid tumors and an important cause of resistance to radiotherapy. Hypoxic cell radiosensitizers have been shown to increase radiotherapy efficacy, but dose-limiting side effects prevent their widespread use in the clinic. We propose the encapsulation of hypoxic cell radiosensitizers in temperature-sensitive liposomes (TSL) to target the radiosensitizers specifically to tumors and to avoid unwanted accumulation in healthy tissues. The main objective of the present study is to develop and characterize TSL loaded with the radiosensitizer pimonidazole (PMZ) and to evaluate the in vitro efficacy of free PMZ and PMZ encapsulated in TSL in combination with hyperthermia and radiotherapy. PMZ was actively loaded into TSL at different drug/lipid ratios, and the physicochemical characteristics and the stability of the resulting TSL-PMZ were evaluated. PMZ release was determined at 37 °C and 42 °C in HEPES buffer saline and fetal bovine serum. The concentration-dependent radiosensitizing effect of PMZ was investigated by exposing FaDu cells to different PMZ concentrations under hypoxic conditions followed by exposure to ionizing irradiation. The efficacy of TSL-PMZ in combination with hyperthermia and radiotherapy was determined in vitro, assessing cell survival and DNA damage by means of the clonogenic assay and histone H2AX phosphorylation, respectively. All TSL-PMZ formulations showed high encapsulation efficiencies and were stable for 30 d upon storage at 4 °C and 20 °C. Fast PMZ release was observed at 42 °C, regardless of the drug/lipid ratio. Increasing the PMZ concentration significantly enhanced the effect of ionizing irradiation. Pre-heated TSL-PMZ in combination with radiotherapy caused a 14.3-fold increase in cell death as compared to radiotherapy treatment alone. In conclusion, our results indicate that TSL-PMZ in combination with hyperthermia can assist in improving the efficacy of radiotherapy under hypoxic conditions.


Assuntos
Quimiorradioterapia/métodos , Hipertermia Induzida/métodos , Neoplasias Hipofaríngeas/metabolismo , Nitroimidazóis/farmacologia , Radiossensibilizantes/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Neoplasias Hipofaríngeas/terapia , Lipossomos/química , Temperatura
2.
Int J Pharm ; 548(2): 778-782, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29126907

RESUMO

Fast hyperthermia (i.e. 39-42 °C) triggered doxorubicin release from lysolipid-containing thermosensitive liposomes (LTSL) in the tumor vasculature has been demonstrated to result in considerable enhancement of bioavailable drug levels in heated tumor tissue in preclinical tumor models. However, there is also significant leakage of doxorubicin already at 37 °C in the bloodstream, making these LTSL less efficient and increasing the risk for systemic toxicity. In conventional liposomes, cholesterol is incorporated in the bilayer to increase the stability of the liposomes. Here, we investigate the effect of cholesterol inclusion on the doxorubicin release characteristics of LTSL at 37 °C and hyperthermic temperatures. For this purpose, three LTSL formulations with 0, 5 and 10 mol% cholesterol were prepared. Inclusion of cholesterol reduced the undesired doxorubicin leakage at 37 °C in Hepes-buffered saline (HBS) as well as in fetal bovine serum (FBS). The incorporation of cholesterol in the LTSL bilayers did not influence the hyperthermia-triggered release property of the LTSL. These results were supported by DSC measurements. Therefore, in conclusion, our data indicate that cholesterol inclusion in LTSL offers a simple solution to the problem of significant leakage of doxorubicin from LTSL already at 37 °C in the bloodstream.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Colesterol/farmacocinética , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Temperatura Alta , Animais , Antibióticos Antineoplásicos/química , Bovinos , Colesterol/química , Doxorrubicina/química , Hipertermia Induzida , Bicamadas Lipídicas/química , Bicamadas Lipídicas/farmacocinética , Lipossomos
3.
Acta Biomater ; 61: 54-65, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28801266

RESUMO

Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy into heat, and lysolipid-incorporated TSL (LTSL) loaded with doxorubicin hydrochloride (DOX). NIR irradiation of the resulting hydrogels (referred to as "lipogels") with 808nm laser light increased the temperature of the illuminated areas, leading to the release of the liposomal cargo. Levels of DOX that release from the "smart" composites were dependent on the concentration of NIR nanotransducers loaded in the lipogel, the intensity of the electromagnetic energy deposited and the irradiation regime. Released DOX retained its bioactivity, as shown in cultures of epithelial carcinoma cells. Finally, the developed drug delivery platform was refined by using NIR-photoabsorbers based on copper sulfide NPs to generate completely biodegradable composites as well as through the incorporation of cholesterol (Ch) in LTSL formulation, which lessens leakiness of the liposomal cargo at physiological temperature. This remotely controlled system may suit well for those therapies that require precise control over the dose of delivered drug in a defined spatiotemporal framework. STATEMENT OF SIGNIFICANCE: Hydrogels composed of fibrin embedding nanoparticles responsive to near infrared (NIR) energy and thermosensitive liposomes loaded with doxorubicin hydrochloride (DOX), were prepared by in situ polymerization. NIR-light irradiation of these constructs, referred to as "NIR responsive lipogels", results in the controlled release of DOX to the surrounding medium. This technology may use fully degradable components and can preserve the bioactivity of liposomal cargo after remote triggering to finely regulate the dose and bioavailability of delivered payloads. NIR responsive lipogels technology overcomes the limitations of drug release systems based on the combination of liposomes and degradable polymeric materials, which in many cases lead to insufficient release at therapy onset or to overdose during high degradation period.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis/química , Raios Infravermelhos , Lipossomos/química , Animais , Bovinos , Fibrina/farmacologia , Ouro/química , Hidrogéis/química , Lipossomos/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Temperatura
4.
Nanoscale ; 9(26): 9190-9201, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28650490

RESUMO

Chemotherapeutic drug resistance of tumor cells under hypoxic conditions is caused by the inhibition of apoptosis by autophagy and drug efflux via adenosine triphosphate (ATP)-dependent transporter activation, among other factors. Here, we demonstrate that disrupting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression can reduce the autophagy and ATP levels in tumor cells. To test whether GAPDH knockdown is sufficient to overcome drug resistance, a nanocarrier (asymmetry-membrane liposome) was designed to encapsulate GAPDH-siRNA with a low dose of paclitaxel (PTX). Liposomes were prepared using novel cryogenic inner-outer dual reverse phase emulsion liposome manufacturing technology to obtain a high loading of siRNA. The results of dynamic light scattering (DLS) indicated that the liposomes had an average hydrodynamic diameter of 250.5 nm and polydispersity index (PDI) of 0.210, which was confirmed by (Transmission Electron Microscope) TEM images. In in vitro tests, the siRNA liposomes presented a high specificity in the suppression of GAPDH expression and significant synergy in cytotoxicity with co-delivery of PTX against tumor cells (HeLa and MCF-7) under hypoxic conditions. Moreover, in vivo studies (a HeLa tumor xenograft model using female BALB/c nude mice) demonstrate that the liposomes could not only increase the concentration of drugs in tumors over time but also successfully boosted the chemotherapeutic efficacy of PTX (synergistic therapy with GAPDH-siRNA). Tumor cells appeared to lose their resistance against PTX therapy, becoming more sensitive to PTX when GAPDH-siRNA was simultaneously administered in long-circulating liposomes. Consequently, the novel delivery of GAPDH-siRNA using nanotargeted liposomes provides a useful and potential tool to overcome multidrug resistant (MDR) tumors and presents a bright prospect compared with the traditional chemotherapeutic strategies in clinic cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Lipossomos , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno , Animais , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Hipóxia , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...