Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15624, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972910

RESUMO

This study examines the impact of fire incidents on wildlife and habitats in the western oak forests of Iran (Zagros region). These forests are globally recognized for their exceptional biodiversity but are frequently threatened by wildfires. To achieve this, the study uses the space-time scan statistics permutation (STSSP) model to identify areas with a higher frequency of fires. The study also analyzes the effects of fires on the Zagros forests from 2000 to 2021 using remote-sensing MODIS data. Also, to understand the elements at risk of fire, burned areas were assessed based on the richness of vertebrate species, determined by the distribution of 88 vertebrate species. The results show that the annual fire rate in the Zagros forests is 76.2 (fire occurrences per year), calculated using the Poisson distribution. Findings show the highest fire rates are found in the northwest and a part of the south of the Zagros. The northwest of the Zagros also has the largest number of single fires and clusters, indicating a wide spatial distribution of fire in these regions. On the other side, it was unexpectedly found that these regions have the richest number of species and higher habitat value. The results demonstrate a significant correlation between the value of the habitat and the extent of burned areas (p < 0.05). The study also reveals that the greatest impact of fires is on small vertebrates. The overlap of frequent fire spots with the richest regions of Zagros oak forests in terms of vertebrate diversity emphasizes the need for strategic forest risk reduction planning, especially in these priority zones.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Florestas , Quercus , Vertebrados , Incêndios Florestais , Irã (Geográfico) , Animais , Conservação dos Recursos Naturais/métodos , Incêndios/prevenção & controle
2.
Heliyon ; 10(8): e29416, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681611

RESUMO

Iran is highly vulnerable to climate change, particularly evident in shifting precipitation and temperature patterns, especially in its southern coastal region. With these changing climate conditions, there is an urgent need for practical and adaptive management of water resources and energy supply to address the challenges posed by future climate change. Over the next two to three decades, the effects of climate change, such as precipitation and temperature, are expected to worsen, posing greater risks to water resources, agriculture, and infrastructure stability. Therefore, this study aims to evaluate the alterations in mean daily temperature (Tmean) and total daily rainfall (rrr24) utilizing climate change scenarios from both phases 5 and 6 of the Coupled Model Inter-comparison Project (CMIP5 and CMIP6, respectively) in the southern coastal regions of Iran (Hormozgan province), specifically north of the Strait of Hormuz. The predictions were generated using the Statistical Downscaling Model (SDSM) and National Centre for Environmental Prediction (NCEP) predictors, incorporating climate change scenarios from CMIP5 with Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5 and CMIP6 with Shared Socioeconomic Pathways (SSPs) 1, 2, and 5. The analysis was conducted for three distinct time periods: the early 21st century (2021-2045), middle 21st century (2046-2071), and late 21st century (2071-2095). The results indicated that the CMIP5 model outperformed the CMIP6 model in simulating and predicting Tmean and rrr24. In addition, a significant increase in Tmean was observed across all the scenarios and time periods, with the most pronounced trend occurring in the middle and late 21st century future periods. This increase was already evident during the base period of 2021-2045 across all scenarios. Moreover, the fluctuations in precipitation throughout the region and across all scenarios were significant in the three examined future periods. The results indicated that among CMIP5 scenarios, RCP8.5 had highest changes of Tmean (+1.22 °C) in Bandar Lengeh station in 2071-2095 period. The lowest change magnitude of Tmean among CMIP5 scenarios was found in RCP4.5 (-1.94 °C) in Ch station in 2046-2070 period. The results indicated that among CMIP5 scenarios, RCP8.5 had highest changes of rrr24 (+150.2 mm) in Chabahar station in 2071-2095 period. The lowest change magnitude of rrr24 among CMIP5 scenarios was found in RCP8.5 (-25.8 mm) in Bandar Abbas station in 2046-2070 period. In conclusion, the study reveals that the coastal area of Hormozgan province will experience rising temperatures and changing rainfall patterns in the future. These changes may lead to challenges such as increased water and energy consumption, heightened risks of droughts or floods, and potential damage to agriculture and infrastructure. These findings offer valuable insights for implementing local mitigation policies and strategies and adapting to emerging climate changes in Hormozgan's coastal areas. For example, utilizing water harvesting technologies, implementing watershed management practices, and adopting new irrigation systems can address challenges like water consumption, agricultural impacts, and infrastructure vulnerability. Future research should accurately assess the effect of these changes in precipitation and temperature on water resources, forest ecosystems, agriculture, and other infrastructures in the study area to implement effective management measures.

3.
Integr Environ Assess Manag ; 20(4): 1046-1059, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334016

RESUMO

The decline of habitats supporting medicinal plants is a consequence of climate change and human activities. In the Middle East, Ferulago angulata, Ferulago carduchorum, and Ferulago phialocarpa are widely recognized for their culinary, medicinal, and economic value. Therefore, this study models these Ferulago species in Iran using the MaxEnt model under two representative concentration pathways (RCP4.5 and RCP8.5) for 2050 and 2070. The objective was to identify the most important bioclimatic (n = 6), edaphic (n = 4), and topographic (n = 3) variables influencing their distribution and predict changes under various climate scenarios. Findings reveal slope percentage as the most significant variable for F. angulata and F. carduchorum, while solar radiation was the primary variable for F. phialocarpa. MaxEnt modeling demonstrated good to excellent performance, as indicated by all the area under the curve values exceeding 0.85. Projections suggest negative area changes for F. angulata and F. carduchorum (i.e., predictions under RCP4.5 for 2050 and 2070 indicate -34.0% and -37.8% for F. phialocarpa, and -0.3% and -6.2% for F. carduchorum; additionally, predictions under RCP 8.5 for 2050 and 2070 show -39.0% and -52.2% for F. phialocarpa, and -1.33% and -9.8% for F. carduchorum), while for F. phialocarpa, a potential habitat increase (i.e., predictions under RCP4.5 for 2050 and 2070 are 23.4% and 11.2%, and under RCP 8.5 for 2050 and 2070 are 64.4% and 42.1%) is anticipated. These insights guide adaptive management strategies, emphasizing conservation and sustainable use amid global climate change. Special attention should be paid to F. angulata and F. carduchorum due to anticipated habitat loss. Integr Environ Assess Manag 2024;20:1046-1059. © 2024 SETAC.


Assuntos
Mudança Climática , Ecossistema , Irã (Geográfico) , Monitoramento Ambiental/métodos , Modelos Teóricos
4.
Environ Monit Assess ; 194(9): 644, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930117

RESUMO

This study aimed at delineating the wildfire risk zones in a fire-prone region located in a rarely addressed area of western Iran (Paveh city) by assessing the potential of factors such as NDVI, topographic factors (elevation, slope, and aspect), land cover, and evaporation in explaining the fire occurrence probability. Analytic hierarchy process (AHP) and geographical information system (GIS) methods were used synergistically to integrate the mentioned factors into analysis, following an informed categorization of each factor based on the information on previous fire occurrence. In the AHP process, elevation and evaporation data were considered to be the most critical factors. It was found that the predicted wildfire risk areas were in agreement with past fire events by the use of the methodology proposed by this study. Accordingly, the study's final wildfire risk map indicated that approximately 64.7% of the study area is located in the high- and very high-risk zones. Land-use planners and decision-makers may use the developed map to setup and implement fire prevention strategies and enhance or develop the fire-surveillance logistics and infrastructure, including but not limited to the positions of fire watchtowers, fire lines, and fire sensors, with the aim to minimize potential fire impacts.


Assuntos
Incêndios , Incêndios Florestais , Processo de Hierarquia Analítica , Monitoramento Ambiental , Sistemas de Informação Geográfica , Irã (Geográfico)
5.
Artigo em Inglês | MEDLINE | ID: mdl-35162082

RESUMO

Estimating the ecotourism carrying capacity (ETCC) in protected areas (PAs) is essential for minimizing the negative impacts of ecotourism and sustainable environmental management. PAs are one of the prominent ecotourism locations and many of these areas have been created to protect biodiversity and improve human wellbeing. This study has identified and prioritized negative impacts of ecotourism in Lar national park, the Jajrud protected area with the sustainable use of natural resources, and Tangeh Vashi national natural monument. For this purpose, physical carrying capacity (PCC), real carrying capacity (RCC), and effective carrying capacity (ECC) were estimated using the ETCC model. The results indicated that due to these areas' ecological sensitivity, the most negative impacts of ecotourism are related to the environmental-physical dimensions. In contrast, the lowest impacts have been observed in the economic-institutional dimensions. Moreover, the results revealed that the highest PCC is related to Lar national park, and the lowest PCC is associated with Tangeh Vashi natural monument. There are more tourists in the Jajrud protected area with the sustainable use of natural resources than other areas in RCC and ECC due to low levels of restrictions and legal instructions. In contrast, in Lar national park and Tangeh Vashi natural monument, due to the short duration of ecotourism in these areas (from June to October), high level of restrictions, and ecological sensitivity, the number of tourists is less than the RCC and ECC. As these areas have a limited ability to attract visitors and ecotourism, the protection of these areas requires the implementation of sustainable management to control the negative impacts of ecotourism and estimate the number of visitors.


Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Irã (Geográfico) , Parques Recreativos
6.
Environ Monit Assess ; 193(12): 842, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821985

RESUMO

Deposition of atmospheric pollution as particulate matter (PM) has become a serious issue in many urban areas. This study measured and estimated the amount of atmospheric PM deposition onto oriental plane (Platanus orientalis L.) trees located in Tehran Megapolis, Iran. PM deposited on the leaves of urban trees during spring and summer was estimated using leaf wash measurements. In addition to direct measurements, the dry deposition velocity and the yearly whole-tree PM deposition were estimated using both field measurements and a theoretical model of deposition flux. We estimated air quality improvement as a result of the trees at respiratory height (1.5 m), tree height (10 m), and boundary layer height (1719 m). Foliar PM deposition during spring and summer was estimated to average 0.05 g/leaf and 41.39 g/tree using direct measurements. The annual PM deposited on the leaves, trunk, and branches of an average urban tree was calculated to be 78.60 g/tree. Trees were estimated to improve air quality at 1.5 m, 10 m, and 1719 m from ground level by 25.8%, 5.8%, and 0.1%, respectively. Hence, oriental plane trees substantially reduce PM at respiratory height.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Irã (Geográfico) , Material Particulado/análise , Folhas de Planta/química , Árvores
7.
Sci Total Environ ; 568: 845-855, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318513

RESUMO

As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...