Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(5): 434, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37126457

RESUMO

We evaluated genetic diversity and population structure of Iranian melons (Cucumis melo L.) using combinations of 35 primer pairs: 15 Simple-Sequence-Repeats (SSR); 10 Inter-Simple-Sequence-Repeats (ISSR); and 10 Sequence-related amplified polymorphism (SRAP) markers in association with resistance to melon Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (FOM ). Genetic similarity was determined by simple matching coefficient (SSM) and dendrogram by clustering-analysis with unweighted pair groups using arithmetic averages (UPGMA). By combining ISSR-SSR-SRAP markers, a high degree of variation among the melons was detected. The mean polymorphism information content (PIC), marker index (MI), effective-number of alleles (I), expected heterozygosity (H), and Nei's gene diversity parameters were 0.392, 0.979, 1.350, 0.551 and 0.225, respectively. According to MI, PIC, I, H, and Nei indices evaluation, ISSR6, ISSR9, SRAP3, SRAP5, SSR3 and SSR6 had the best performance in genetic diversity of the related melons population. The 35 primers yielded a total of 264 bands, of which 142 showed polymorphism. Clustering of genotypes based on resistance to Fusarium wilt, and comparison with grouping on SSR, SRAP and ISSR marker revealed a significant compliance between disease severity and molecular marker dendrograms. Thus, increasing the number of molecular markers for genetic diversity provides a powerful tool for future agricultural and conservation tasks.

2.
Funct Plant Biol ; 50(5): 347-362, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944375

RESUMO

We evaluated genetic diversity and population structure of Iranian melons (Cucumis melo L.) using combinations of 35 primer pairs: 15 Simple-Sequence-Repeats (SSR); 10 Inter-Simple-Sequence-Repeats (ISSR); and 10 Sequence-related amplified polymorphism (SRAP) markers in association with resistance to melon Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (FOM ). Genetic similarity was determined by simple matching coefficient (SSM) and dendrogram by clustering-analysis with unweighted pair groups using arithmetic averages (UPGMA). By combining ISSR-SSR-SRAP markers, a high degree of variation among the melons was detected. The mean polymorphism information content (PIC), marker index (MI), effective-number of alleles (I), expected heterozygosity (H), and Nei's gene diversity parameters were 0.392, 0.979, 1.350, 0.551 and 0.225, respectively. According to MI, PIC, I, H, and Nei indices evaluation, ISSR6, ISSR9, SRAP3, SRAP5, SSR3 and SSR6 had the best performance in genetic diversity of the related melons population. The 35 primers yielded a total of 264 bands, of which 142 showed polymorphism. Clustering of genotypes based on resistance to Fusarium wilt, and comparison with grouping on SSR, SRAP and ISSR marker revealed a significant compliance between disease severity and molecular marker dendrograms. Thus, increasing the number of molecular markers for genetic diversity provides a powerful tool for future agricultural and conservation tasks.


Assuntos
Cucumis melo , Cucurbitaceae , Fusarium , Fusarium/genética , Cucumis melo/genética , Irã (Geográfico) , Polimorfismo Genético , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA