Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Dev Dyn ; 251(6): 973-987, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34096672

RESUMO

Axolotls represent a popular model to study how nature solved the problem of regenerating lost appendages in tetrapods. Our work over many years focused on trying to understand how these animals can achieve such a feat and not end up with a scarred up stump. The Tgf-ß superfamily represents an interesting family to target since they are involved in wound healing in adults and pattern formation during development. This family is large and comprises Tgf-ß, Bmps, activins and GDFs. In this review, we present work from us and others on Tgf-ß & Bmps and highlight interesting observations between these two sub-families. Tgf-ß is important for the preparation phase of regeneration and Bmps for the redevelopment phase and they do not overlap with one another. We present novel data showing that the Tgf-ß non-canonical pathway is also not active during redevelopment. Finally, we propose a molecular model to explain how Tgf-ß and Bmps maintain distinct windows of expression during regeneration in axolotls.


Assuntos
Proteínas Morfogenéticas Ósseas , Fator de Crescimento Transformador beta , Ambystoma mexicanum , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Regeneração , Fator de Crescimento Transformador beta/metabolismo , Cicatrização
3.
Development ; 147(14)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32665245

RESUMO

Amputation of a salamander limb triggers a regeneration process that is perfect. A limited number of genes have been studied in this context and even fewer have been analyzed functionally. In this work, we use the BMP signaling inhibitor LDN193189 on Ambystoma mexicanum to explore the role of BMPs in regeneration. We find that BMP signaling is required for proper expression of various patterning genes and that its inhibition causes major defects in the regenerated limbs. Fgf8 is downregulated when BMP signaling is blocked, but ectopic injection of either human or axolotl protein did not rescue the defects. By administering LDN193189 treatments at different time points during regeneration, we show clearly that limb regeneration progresses in a proximal to distal fashion. This demonstrates that BMPs play a major role in patterning of regenerated limbs and that regeneration is a progressive process like development.


Assuntos
Ambystoma mexicanum/metabolismo , Proteínas de Anfíbios/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Extremidades/fisiologia , Regeneração/fisiologia , Transdução de Sinais , Ambystoma mexicanum/crescimento & desenvolvimento , Proteínas de Anfíbios/genética , Animais , Proteínas Morfogenéticas Ósseas/genética , Proliferação de Células/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
4.
Sci Rep ; 9(1): 1144, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718780

RESUMO

Axolotls have the amazing ability to regenerate. When compared to humans, axolotls display a very fast wound closure, no scarring and are capable to replace lost appendages perfectly. Understanding the signaling mechanism leading to this perfect healing is a key step to help develop regenerative treatments for humans. In this paper, we studied cellular pathways leading to axolotl limb regeneration. We focus on the wound closure phase where keratinocytes migrate to close the lesion site and how epithelial to mesenchymal transitions are involved in this process. We observe a correlation between wound closure and EMT marker expression. Functional analyses using pharmacological inhibitors showed that the TGF-ß/SMAD (canonical) and the TGF-ß/p38/JNK (non-canonical) pathways play a role in the rate to which the keratinocytes can migrate. When we treat the animals with a combination of inhibitors blocking both canonical and non-canonical TGF-ß pathways, it greatly reduced the rate of wound closure and had significant effects on certain known EMT genes.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Extremidades/fisiologia , Queratinócitos/citologia , Fator de Crescimento Transformador beta/fisiologia , Cicatrização/fisiologia , Ambystoma mexicanum , Animais , Movimento Celular , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Smad/metabolismo
5.
Development ; 143(19): 3481-3490, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27549395

RESUMO

Axolotls are unique among vertebrates in their ability to regenerate tissues, such as limbs, tail and skin. The axolotl limb is the most studied regenerating structure. The process is well characterized morphologically; however, it is not well understood at the molecular level. We demonstrate that TGF-ß1 is highly upregulated during regeneration and that TGF-ß signaling is necessary for the regenerative process. We show that the basement membrane is not prematurely formed in animals treated with the TGF-ß antagonist SB-431542. More importantly, Smad2 and Smad3 are differentially regulated post-translationally during the preparation phase of limb regeneration. Using specific antagonists for Smad2 and Smad3 we demonstrate that Smad2 is responsible for the action of TGF-ß during regeneration, whereas Smad3 is not required. Smad2 target genes (Mmp2 and Mmp9) are inhibited in SB-431542-treated limbs, whereas non-canonical TGF-ß targets (e.g. Mmp13) are unaffected. This is the first study to show that Smad2 and Smad3 are differentially regulated during regeneration and places Smad2 at the heart of TGF-ß signaling supporting the regenerative process.


Assuntos
Extremidades/fisiologia , Regeneração/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ambystoma mexicanum/metabolismo , Ambystoma mexicanum/fisiologia , Animais , Apoptose/efeitos dos fármacos , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Benzamidas/farmacologia , Western Blotting , Dioxóis/farmacologia , Imunofluorescência , Regeneração/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
6.
J Biol Chem ; 290(34): 20960-20971, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26170449

RESUMO

Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Animais , Biocatálise , Técnicas de Cultura de Células , Proliferação de Células , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transgenes
7.
Methods Mol Biol ; 1290: 187-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25740487

RESUMO

The use of cells grown in vitro has been instrumental for multiple aspects of biomedical research and especially molecular and cellular biology. The ability to grow cells from multicellular organisms like humans, squids, or salamanders is important to simplify the analyses and experimental designs to help understand the biology of these organisms. The advent of the first cell culture has allowed scientists to tease apart the cellular functions, and in many situations these experiments help understand what is happening in the whole organism. In this chapter, we describe techniques for the culture and genetic manipulation of an established cell line from axolotl, a species widely used for studying epimorphic regeneration.


Assuntos
Ambystoma mexicanum/genética , Técnicas de Cultura de Células/métodos , Transfecção/métodos , Animais , Linhagem Celular , Criopreservação , Eletroporação , Lipídeos/farmacologia , Plasmídeos/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...