Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Pharm Sci ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768757

RESUMO

Nanoparticles composed of Levan and Dolutegravir (DTG) have been successfully synthesized using a spray drying procedure specifically designed for milk/food admixture applications. Levan, obtained from the microorganism Bacillus subtilis, was thoroughly characterized using MALDI-TOF and solid-state NMR technique to confirm its properties. In the present study, this isolated Levan was utilized as a carrier for drug delivery applications. The optimized spray-dried nanoparticles exhibited a smooth surface morphology with particle sizes ranging from 195 to 329 nm. In the in-vitro drug release experiments conducted in water media, the spray-dried nanoparticles showed 100 % release, whereas the unprocessed drug exhibited only 50 % release at the end of 24 h. Notably, the drug release in milk was comparable to that in plain media, indicating the compatibility. The improved dissolution rate observed for the nanoparticles could be attributed to the solid-state conversion (confirmed by XRD analysis) of DTG from its crystalline to amorphous state. The stability of the drug was verified using Fourier Transform Infra-Red Spectroscopy and Thermogravimetry-Differential Scanning Calorimetry analysis. To evaluate the in-vitro cellular toxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was conducted, which revealed the CC50 value of 88.88 ± 5.10 µg/mL for unprocessed DTG and 101.08 ± 37.37 µg/mL for DTG nanoparticles. These results indicated that the toxicity of the nanoparticles was comparable to the unprocessed drug. Furthermore, the anti-HIV activity of the nanoparticles in human cell lines was found to be similar to that of the pure drug, emphasizing the therapeutic efficacy of DTG in combating HIV.

2.
J Integr Complement Med ; 30(4): 403-406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38011692

RESUMO

Background: Yoga and naturopathy (Y&N) is a system of medicine primarily focusing on restoration of health and well-being. Objective of this study is to understand the knowledge, attitude, and perception about Y&N among the inpatients of a government Y&N institution in south India. Methods: Focus group discussion was conducted in eight adult patients aged between 30 and 60 years who took Y&N treatments for a period of 10 days or more. Purposive sampling method was adopted. Oral informed consent was obtained. Results: Knowledge about the Y&N system of medicine was primarily through referral or "word of mouth." Perceived benefits were both physical and psychological. Uniqueness of the hospital as mentioned by participants includes individual attention, tailor-made treatment protocols, and one-to-one care to the needy patients. Conclusion: An integrated approach is very much essential that might bring about better treatment outcomes in patients.


Assuntos
Meditação , Naturologia , Yoga , Adulto , Humanos , Lactente , Yoga/psicologia , Pacientes Internados , Hospitais
3.
J Virol Methods ; 322: 114830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783397

RESUMO

Turkey red blood cells (tRBCs) are an essential reagent used in the laboratory diagnosis of influenza viruses. Fresh tRBCs when stored at 4 °C have a shelf life of less than a week. Previous studies have shown the utility of glutaraldehyde-fixed tRBCs, with an increased shelf life, for use in hemagglutination (HA) assays. In the present study, we report their functionality after storage for 18 months, at -80 °C. Three influenza A subtypes, namely, H3N2, H1N1 and H5N1, were used in the study. Hemagglutination assay was performed using freshly prepared 0.5 % tRBCs suspension and stored 1 % glutaraldehyde-fixed tRBCs. There was no significant difference in the HA titers obtained using fresh and stored tRBCs. The validation of the HA assay was carried out, to determine the specificity, linearity, precision, accuracy, and robustness of the assay. All of the titers were within the acceptable range, indicating the validity of the HA assay using stored tRBCs. Hemagglutination inhibition assay was also performed to compare the antibody titers obtained using stored and fresh tRBCs. The stored RBCs also gave equivalent antibody titers, as compared to the fresh tRBCs. Thus, the present study demonstrates the utility of glutaraldehyde-fixed tRBCs after one and a half years of storage.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Glutaral , Anticorpos Antivirais , Vírus da Influenza A Subtipo H3N2 , Testes de Inibição da Hemaglutinação , Perus , Eritrócitos
4.
ACS Med Chem Lett ; 14(10): 1338-1343, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849531

RESUMO

Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770). A subsequent SAR campaign led us to a class of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines that in combination with VX-770 rescued function of G551D mutant CFTR channels to approximately 400% above the activity of VX-770 alone and to nearly wild-type CFTR levels in the same Fischer rat thyroid model system.

5.
Indian J Med Res ; 158(2): 113-118, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37675691

RESUMO

Background & objectives: The highly pathogenic avian influenza (HPAI) H5N1 and H5N8 viruses have been one of the leading causes of avian diseases worldwide, resulting in severe economic losses and posing potential zoonotic risk. There are no reports on the correlation of the seasonality of H5N1 and H5N8 viruses with the migratory bird season in India, along with the species affected. The present report describes the distribution and seasonality of HPAI outbreaks in India from 2006 to 2021. Methods: The data on the occurrence and locations of outbreaks in India and affected bird species were collated from the Food and Agriculture Organization of the United Nations database and grouped by month and year. The distribution and seasonality of HPAI H5N1 and H5N8 viruses were analyzed. Results: A total of 284 H5N1 outbreaks were reported since 2006, with a surge in 2021. The initial outbreaks of H5N1 were predominantly in poultry. Since 2016, 57 outbreaks of H5N8 were also reported, predominantly in wild birds. Most of the outbreaks of HPAI were reported from post monsoon onwards till pre-summer season (i.e. between October and March) with their peak in winter, in January. Apart from poultry, the bird species such as owl, Indian peafowl, lesser adjutant, crows and wild migratory birds such as demoiselle crane, northern pintail and bar-headed goose were positive for HPAI. Interpretation & conclusions: Such studies on the seasonality of HPAI outbreaks would help in the development of prevention and control strategies. The recent human infections of H5N1 and H9N2 viruses highlight the need to strengthen surveillance in wild, resident, migratory birds and in poultry along with One Health studies in India.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Influenza Aviária/epidemiologia , Surtos de Doenças , Animais Selvagens , Aves , Aves Domésticas , Índia/epidemiologia
6.
Gels ; 9(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232965

RESUMO

Flavonoids and polyphenolic compounds play a key role in wound healing cycle modulation. Propolis, a natural bee product, has been widely reported as an enriched source of polyphenols and flavonoids as important chemical constituents and for its wound healing potential. The goal of this study was to develop and characterize a propolis-based polyvinyl alcohol (PVA) hydrogel composition with wound healing potential. To understand the impacts of critical material attributes and process parameters, formulation development was carried out using a design of experiment approach. A preliminary phytochemical analysis of Indian propolis extract showed the presence of flavonoids (23.61 ± 0.0452 mg equivalent of quercetin/g) and polyphenols (34.82 ± 0.0785 mg equivalent of gallic acid/g), both of which aid in wound healing and skin tissue regeneration. The pH, viscosity, and in vitro release of the hydrogel formulation were also studied. The burn wound healing model results revealed significant (p < 0.0001) wound contraction by propolis hydrogel (93.58 + 0.15%) with rapid re-epithelialization relative to 5% w/w povidone iodine ointment USP (Cipladine®) (95.39 + 0.16%). The excision wound healing model confirms significant (p < 0.0001) wound contraction by propolis hydrogel (91.45 + 0.29%) with accelerated re-epithelialization comparable to 5% w/w povidone iodine ointment USP (Cipladine®) (94.38 + 0.21%). The developed formulation offers promise for wound healing, which may be investigated further for clinical research.

7.
Indian J Anaesth ; 67(Suppl 1): S15-S28, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37065945

RESUMO

Background and Aims: Major complications of central neuraxial block (CNB) are rare and their incidence in India is not known. This information is essential for explaining risk and medico-legal concerns. The present multi-centre study in Maharashtra was conducted to provide insight into the characteristics of rare complications following this popular anaesthetic technique. Methods: Data were collected from 141 institutes to study the clinical profile of CNB. Incidence of complications like vertebral canal haematoma, abscess, meningitis, nerve injury, spinal cord ischaemia, fatal cardiovascular collapse, and drug errors was collected over one year. Complications were reviewed by audit committee to assess causation, severity, and outcome. 'Permanent' injury was defined as death or neurological symptoms persisting for more than six months. Results: Spinal anaesthesia (SA) was the most frequently used CNB in 88.76% patients. Bupivacaine and an adjuvant were used in 92.90% and 26.06% patients, respectively. Eight major complications (four neurological and four cardiac arrests) were reported in patients receiving SA. In seven of eight instances, SA was responsible or contributory for complication. The pessimistic incidence of complications (included cases where CNB was responsible; contribution was likely, unlikely and could not be commented) was 8.69/lakh and optimistic incidence (included cases where CNB was responsible or contribution was likely) was 7.61/lakh. 'Pessimistically' and 'optimistically' there were three deaths including one death due to quadriplegia following epidural haematoma after SA. Five out of eight patients recovered completely (62.5%). As only eight patients had complications of different types, it was difficult to establish statistical correlation of major complications with demographic or clinical parameters. Conclusion: This study was reassuring and suggested that the incidence of major complications following CNB was low in Maharashtra.

8.
Virology ; 579: 9-28, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587605

RESUMO

The low pathogenic avian influenza H9N2 virus is a significant zoonotic agent and contributes genes to highly pathogenic avian influenza (HPAI) viruses. H9N2 viruses are prevalent in India with a reported human case. We elucidate the spatio-temporal origins of the H9N2 viruses from India. A total of 30H9N2 viruses were isolated from poultry and environmental specimens (years 2015-2020). Genome sequences of H9N2 viruses (2003-2020) from India were analyzed, revealing several substitutions. We found five reassortant genotypes. The HA, NA and PB2 genes belonged to the Middle-Eastern B sublineage; NP and M to the classical G1 lineage; PB1, PA and NS showed resemblance to genes from either HPAI-H7N3/H5N1 viruses. Molecular clock and phylogeography revealed that the introduction of all the genes to India took place around the year 2000. This is the first report of the genesis and evolution of the H9N2 viruses from India, and highlights the need for surveillance.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Influenza Aviária/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Filogeografia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N3 , Galinhas , Filogenia , Índia/epidemiologia , Vírus Reordenados/genética
9.
Indian J Med Res ; 155(1): 129-135, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859439

RESUMO

Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS-CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin-Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per µl. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories.


Assuntos
COVID-19 , Sarampo , Poliomielite , Rubéola (Sarampo Alemão) , Animais , Linhagem Celular , Chlorocebus aethiops , Contenção de Riscos Biológicos , Cães , Vigilância em Saúde Pública , SARS-CoV-2 , Células Vero
10.
Sci Total Environ ; 816: 151522, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34752862

RESUMO

The newly prepared reduced graphene oxide-MnO2 (rGO-MnO2) nanocomposite has exhibited highly selective CO2 adsorption from gaseous mixtures at elevated temperatures. The Mn2+ basic sites are scattered over the rGO-MnO2 nanocomposite which produce an effective BET surface area of 710 m2 g-1 for selective CO2 capture. The selective adsorption of CO2 (5.87 mmol g-1) over N2 (0.36 mmol g-1) and CH4 (0.41 mmol g-1) at 298 K/1 bar was achieved by the nanocomposite. The heat of adsorption followed a unique correlation with the quantity of CO2 adsorbed and fits well to the Fowler-Guggenheim equation. The mechanism of CO2 adsorption on the nanocomposite was complemented with molecular modelling and simulations. The rGO-MnO2 have shown better CO2 adsorption capacity of 28.5 mmol g-1 at 323 K/20 bar as compared to zeolite derivatives, MOFs, and carbons as reported in the literature. The formation of inert frameworks with 3-6 nm porous structure in the nanocomposite thermally stabilizes to capture CO2 repeatedly. The nanocomposite with adsorption capacity of 3.69 mmol g-1 at 373 K/1 bar is quite close to real-life conditions for flue gas treatment.

12.
Procedia Comput Sci ; 194: 255-271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34876935

RESUMO

Globally, the confirmed coronavirus (SARS-CoV2) cases are being increasing day by day. Coronavirus (COVID-19) causes an acute infection in the respiratory tract that started spreading in late 2019. Huge datasets of SARS-CoV2 patients can be incorporated and analyzed by machine learning strategies for understanding the pattern of pathological spread and helps to analyze the accuracy and speed of novel therapeutic methodologies, also detect the susceptible people depends on their physiological and genetic aspects. To identify the possible cases faster and rapidly, we propose the Artificial Intelligence (AI) power screening solution for SARS- CoV2 infection that can be deployable through the mobile application. It collects the details of the travel history, symptoms, common signs, gender, age and diagnosis of the cough sound. To examine the sharpness of pathomorphological variations in respiratory tracts induced by SARS-CoV2, that compared to other respiratory illnesses to address this issue. To overcome the shortage of SARS-CoV2 datasets, we apply the transfer learning technique. Multipronged mediator for risk-averse Artificial Intelligence Architecture is induced for minimizing the false diagnosis of risk-stemming from the problem of complex dimensionality. This proposed application provides early detection and prior screening for SARS-CoV2 cases. Huge data points can be processed through AI framework that can examine the users and classify them into "Probably COVID", "Probably not COVID" and "Result indeterminate".

13.
Rev Sci Instrum ; 92(8): 081401, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470433

RESUMO

The ongoing coronavirus disease (COVID-19) pandemic is a global public health emergency. Adherence to biosafety practices is mandatory to protect the user as well as the environment, while handling infectious agents. A biological safety cabinet (BSC) is the most important equipment used in diagnostic and research laboratories in order to safeguard the product, the person, and the environment. The World Health Organization has emphasized the use of validated BSCs in order to ensure quality of the results. There are different classes of BSCs that are used in various work environments based on the need. It is imperative to use appropriate levels of biosafety and types of BSCs in laboratories based on the risk assessment of the pathogen used. During the development of COVID-19 laboratories and training of laboratory staff, we came across several queries about the functions and selection of BSCs and realized that the knowledge about the detailed information on selections and applications of BSCs is scanty. There are several guidelines regarding the biosafety aspects for diagnostic and research laboratories handling infectious pathogens from national and international agencies. However, there is no detailed information on the use of appropriate types of BSCs and their functions in the context of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). In view of this, the present paper describes in detail the selection and applications of BSCs, which could be useful for laboratories handling or planning to handle SARS-CoV-2 and suspected samples.


Assuntos
COVID-19 , Contenção de Riscos Biológicos , Laboratórios , SARS-CoV-2 , Manejo de Espécimes , Inativação de Vírus , Animais , Humanos
14.
Sci Rep ; 11(1): 17321, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453094

RESUMO

A complex of reduced graphene oxide (rGO) and fluorescein (FL) dye nanoparticles of size between 50 and 100 nm has been prepared and its sensing performance for detection of As(III) in drinking water has been reported. When As(III) binds to the rGO-FL nanoparticles the relative quenching of fluorescence was increased with increase in As(III) concentration thus provide two linear calibration ranges (0-4.0 mmol L-1 and 4.0-10 mmol L-1). The fluorescence quenching mechanism was investigated by using time-resolved fluorescence spectroscopy and molecular modeling. The detection limit of this sensor has been determined as equal to 0.96 µg L-1 which is about 10 times lower than the WHO stipulated standard for As(III) in drinking water (10 µg L-1). The analytical performance and potential application of the nanosensor was compared to commercial field kits used in arsenic monitoring. The sensor proposed in this study is fast, sensitive and accurate for detection of As(III) in drinking water and environmental samples.

15.
Chemosphere ; 284: 131405, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34225122

RESUMO

Cenospheres (CS) are spherical shaped inorganic frameworks present in with fly ash which is generated from coal-fired thermal power plants. These spherical structures were functionalized with imidazole and amine moieties to capture CO2 selectively from flue gases at elevated temperature. The functionalized CS have shown a high selectivity for CO2 adsorption (4.68 mmol g-1) over N2 (0.46 mmol g-1) at 333 K/1 bar from a simulated flue gas (0.15 CO2 and 0.85 N2, v%) composition of thermal power plants. When the moisture content reached to 30 vol% the adsorption capacity of CS materials was reduced to 20 vol% as compared to dry flue gas. The functionalized CS can be used repeatedly for 50 cycles without losing its adsorption capacity. The cost estimate for CO2 capture by using the proposed adsorption system would be $12.01/ton of CO2 which is lower as compared to amine absorption system and zeolite-based adsorption system reported in the literature. The CS materials are prepared from solid wastes reduce the cost of production and their large scale manufacturing is technically feasible to capture CO2 from industrial flue gases efficiently in near future.


Assuntos
Cinza de Carvão , Resíduos Sólidos , Dióxido de Carbono , Cinza de Carvão/análise , Centrais Elétricas , Temperatura
16.
Sci Rep ; 11(1): 8084, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850240

RESUMO

It is a great challenge to convert thermochemically stable CO2 into value-added products such as CH4, CH3OH, CO via utilizing solar energy. It is also a difficult task to develop an efficient catalyst for the reduction of CO2. We have designed and synthesized noble metal-free photocatalytic nanostructure Ni2P/CdS and Pt/TiO2 for conversion of CO2 to methanol in the presence of sacrificial donor triethylamine (TEA) and hydrogen peroxide. The synthesised catalysts physicochemical properties were studied by using several spectroscopic techniques like; XRD, UV-DRS, XPS, TEM, SEM and PL. Quantification of methanol by GC-MS showed encouraging results of 1424.8 and 2843 µmol g-1 of catalyst for Pt/TiO2 and 5 wt% Ni2P/CdS composites, respectively. Thus, Ni2P/CdS is a promising catalyst with higher productivity and significant selectivity than in-vogue catalysts.

17.
Indian J Med Res ; 154(6): 871-887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662093

RESUMO

Background & objectives: Low pathogenic avian influenza (LPAI) viruses cause mild clinical illness in domestic birds. Migratory birds are a known reservoir for all subtypes of avian influenza (AI) viruses. The objective of the study was to characterize AI H4N6 virus isolated from an environmental sample during surveillance in Maharashtra, India. Methods: AI surveillance in wild migratory birds was conducted during the winter migratory bird season (2016-2017) in Pune, India. AI H4N6 virus was isolated from the faecal droppings of a wild migratory waterbird. Virological and molecular characterization of the isolated virus was carried out. Virus titration, haemagglutination inhibition assay, receptor specificity assay, intravenous pathogenicity index and neuraminidase inhibition assays were performed. Full genome sequencing, molecular and phylogenetic analyses were also conducted. Results: The virus was found to be of low pathogenicity, with avian type receptor specificity, and was susceptible to neuraminidase inhibitors. Phylogenetic and molecular analysis revealed that the present virus is a result of extensive reassortment with AI H8N4, H6N2, H4N3 and H3N6, predominantly as donor viruses among others. Interpretation & conclusions: This is the first report of the isolation and characterization of an LPAI H4N6 virus from an environmental sample from India. The present study showed that the H4N6 virus is a novel reassortant and divergent as compared with the reported H4N6 viruses from poultry in India, indicating independent introduction. This highlights the role of wild and migratory birds in the transmission of AI viruses and necessity of such studies at the human-animal interface.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Humanos , Índia/epidemiologia , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Neuraminidase/genética , Filogenia
18.
J Virol Methods ; 289: 114046, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33333106

RESUMO

INTRODUCTION: Hemagglutination (HA) and hemagglutination inhibition (HI) assays are conventionally used for the detection and identification of influenza viruses, using red blood cells (RBCs) from mammalian and avian sources. However, there could be limitations for availability of fresh RBCs due to situations such as pandemics, public health emergencies, outbreaks in avian species, lack of animal facilities, animal ethics concerns; or resource-constrained laboratories, and laboratories which do not carry out HA and HI assays routinely. Turkey RBCs (tRBCs) are widely used for HA and HI assays of influenza viruses. The present study explored the possibility of the use of glutaraldehyde-fixed tRBCs, which could be stored at -80 ºC and readily used for HA and HI assays. MATERIALS AND METHODS: A total of nine subtypes of human and avian influenza viruses, A H1N1, H3N2, H4N6, H5N1, H6N1, H7N9, H9N2, H11N1 and type B, were used in the study. Turkey RBCs were fixed with glutaraldehyde. The HA and HI assays were performed three times by two different operators using fresh and glutaraldehyde fixed tRBCs. The significance of difference in HA and HI titers between fixed and fresh RBCs was compared using 't-test'. The performance of fixed RBCs was evaluated before and after storing at -80 ºC for three weeks. RESULTS: There was no significant difference (p > 0.05) between mean HA and HI titers using fresh and glutaraldehyde-fixed turkey RBCs. In addition, the HA and HI titers using fixed tRBCs before and after storing at -80 ºC were equivalent, indicating suitability of the fixed and stored RBCs. CONCLUSIONS: This is the first report of the use of fixed and stored tRBCs for HA and HI assays of influenza viruses, highlighting their applicability as a ready-to-use reagent for laboratory diagnosis of influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Animais , Anticorpos Antivirais , Eritrócitos , Glutaral , Hemaglutinação , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A Subtipo H3N2
19.
Front Biosci (Landmark Ed) ; 26(4): 664-681, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049687

RESUMO

Naturally occurring flavonoids have been shown to possess anticancer activity. We have previously shown that certain synthetic flavonoids also exert significant antiproliferative potential in MOLT-4, MCF-7, and HepG2 cell lines. To this end, we evaluated eight synthetic flavones for their CDK2 binding by molecular docking. Most flavones showed interaction with Leu 83. Based on docking and antiproliferative activity, we chose 3'-nitroflavone and 3', 5'-dimethoxyflavone for the molecular dynamics (MD) simulation and CDK2 inhibition studies. MD simulation studies confirmed interactions with CDK2 (as observed in docking). Furthermore, the inhibitory activities of CDK2/cyclin A2 enzyme for 3'-nitroflavone and 3', 5'-dimethoxyflavone were found to be 6.17 and 7.19 �M, respectively. 3'-nitroflavone and 3', 5'-dimethoxyflavone displayed moderate activity in colony formation assay, wound-scratch assay, and Leighton tube studies. Based on these data, the synthesized flavones might have clinical potential as potential inhibitors of CDK2.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Flavonas/química , Flavonas/farmacologia , Metástase Neoplásica/prevenção & controle , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
20.
Indian J Med Microbiol ; 38(3 & 4): 243-251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154231

RESUMO

A well-established and functional quality management system is an integral part of any diagnostic laboratory. It assures the reliability and standards of the laboratory function. A pandemic situation such as that caused by the influenza H1N1 2009 virus or the recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) increases the demands on the public health system, and the need to build, upgrade and expand the number of diagnostic laboratories. The Coronavirus disease-19 (COVID-19) pandemic caused by the SARS-CoV-2 unleashed a public health emergency of an unprecedented scale. The need has been highlighted for the accreditation of tests relating to COVID-19 by the National Accreditation Board for Testing and Calibration Laboratories (NABL) or any agencies approved by the World Health Organization (WHO) or Indian Council of Medical Research. The implementation of quality system in diagnostic laboratories would ensure accurate, reliable and efficient test results at par with the international standards. The functional aspects of a laboratory such as a well-defined organogram, standard operating procedures, good laboratory practices, quality controls, human resources, equipment management, reagents, inventory of records, proper communication need to be addressed to assure quality. Biosafety considerations should include the guidelines laid out by the WHO, the Institutional Biosafety Committee and the Department of Biotechnology, Government of India for carrying out diagnostic work in the laboratory. Currently, there are 1922 laboratories, operational for COVID-19 diagnosis in India. Considering the urgency of testing, the NABL has expedited the process of accreditation and issued accreditation to 818 laboratories. The adherence to the practicable aspects of quality described in this article would help in establishing quality in COVID-19 testing laboratories.


Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Controle de Qualidade , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Humanos , Índia , Pandemias , SARS-CoV-2 , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...