Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475145

RESUMO

In the era of aging civil infrastructure and growing concerns about rapid structural deterioration due to climate change, the demand for real-time structural health monitoring (SHM) techniques has been predominant worldwide. Traditional SHM methods face challenges, including delays in processing acquired data from large structures, time-intensive dense instrumentation, and visualization of real-time structural information. To address these issues, this paper develops a novel real-time visualization method using Augmented Reality (AR) to enhance vibration-based onsite structural inspections. The proposed approach presents a visualization system designed for real-time fieldwork, enabling detailed multi-sensor analyses within the immersive environment of AR. Leveraging the remote connectivity of the AR device, real-time communication is established with an external database and Python library through a web server, expanding the analytical capabilities of data acquisition, and data processing, such as modal identification, and the resulting visualization of SHM information. The proposed system allows live visualization of time-domain, frequency-domain, and system identification information through AR. This paper provides an overview of the proposed technology and presents the results of a lab-scale experimental model. It is concluded that the proposed approach yields accurate processing of real-time data and visualization of system identification information by highlighting its potential to enhance efficiency and safety in SHM by integrating AR technology with real-world fieldwork.

2.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050425

RESUMO

The importance of civil engineering infrastructure in modern societies has increased lately due to the growth of the global economy. It forges global supply chains facilitating enormous economic activity. The bridges usually form critical links in complex supply chain networks. Structural health monitoring (SHM) of these infrastructures is essential to reduce life-cycle costs, and determine their remaining life using advanced sensing techniques and data fusion methods. However, the data obtained from the SHM systems describing the health condition of the infrastructure systems may contain anomalies (i.e., distortion, drift, bias, outlier, noise etc.). An automated framework is required to accurately classify these anomalies and evaluate the current condition of these systems in a timely and cost-effective manner. In this paper, a recursive and interpretable decision tree framework is proposed to perform multiclass classification of acceleration data collected from a real-life bridge. The decision nodes of the decision tree are random forest classifiers that are invoked recursively after synthetically augmenting the training data before successive iterations until suitable classification performance is obtained. This machine-learning-based classification model evolved from a simplistic decision tree where statistical features are used to perform classification. The feature vectors defined for training the random forest classifiers are calculated using similar statistical features that are easy to interpret, enhancing the interpretability of the classifier models. The proposed framework could classify non-anomalous (i.e., normal) time-series of the test dataset with 98% accuracy.

3.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015955

RESUMO

The deterioration of infrastructure's health has become more predominant on a global scale during the 21st century. Aging infrastructure as well as those structures damaged by natural disasters have prompted the research community to improve state-of-the-art methodologies for conducting Structural Health Monitoring (SHM). The necessity for efficient SHM arises from the hazards damaged infrastructure imposes, often resulting in structural collapse, leading to economic loss and human fatalities. Furthermore, day-to-day operations in these affected areas are limited until an inspection is performed to assess the level of damage experienced by the structure and the required rehabilitation determined. However, human-based inspections are often labor-intensive, inefficient, subjective, and restricted to accessible site locations, which ultimately negatively impact our ability to collect large amounts of data from inspection sites. Though Deep-Learning (DL) methods have been heavily explored in the past decade to rectify the limitations of traditional methods and automate structural inspection, data scarcity continues to remain prevalent within the field of SHM. The absence of sufficiently large, balanced, and generalized databases to train DL-based models often results in inaccurate and biased damage predictions. Recently, Generative Adversarial Networks (GANs) have received attention from the SHM community as a data augmentation tool by which a training dataset can be expanded to improve the damage classification. However, there are no existing studies within the SHM field which investigate the performance of DL-based multiclass damage identification using synthetic data generated from GANs. Therefore, this paper investigates the performance of a convolutional neural network architecture using synthetic images generated from a GAN for multiclass damage detection of concrete surfaces. Through this study, it was determined the average classification performance of the proposed CNN on hybrid datasets decreased by 10.6% and 7.4% for validation and testing datasets when compared to the same model trained entirely on real samples. Moreover, each model's performance decreased on average by 1.6% when comparing a singular model trained with real samples and the same model trained with both real and synthetic samples for a given training configuration. The correlation between classification accuracy and the amount and diversity of synthetic data used for data augmentation is quantified and the effect of using limited data to train existing GAN architectures is investigated. It was observed that the diversity of the samples decreases and correlation increases with the increase in the number of synthetic samples.


Assuntos
Aprendizado Profundo , Envelhecimento , Coleta de Dados , Bases de Dados Factuais , Humanos , Redes Neurais de Computação
4.
J Vib Control ; 28(15-16): 2155-2167, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35844250

RESUMO

In this article, multivariate empirical mode decomposition is proposed for damage localization in structures using limited measurements. Multivariate empirical mode decomposition is first used to decompose the acceleration responses into their mono-component modal responses. The major contributing modal responses are then used to evaluate the modal energy for the respective modes. A damage localization feature is proposed by calculating the percentage difference in the modal energies of damaged and undamaged structures, followed by the determination of the threshold value of the feature. The feature of the specific sensor location exceeding the threshold value is finally used to identify the location of structural damage. The proposed method is validated using a suite of numerical and full-scale studies. The validation is further explored using various limited measurement cases for evaluating the feasibility of using a fewer number of sensors to enable cost-effective structural health monitoring. The results show the capability of the proposed method in identifying as minimal as 2% change in global modal parameters of structures, outperforming the existing time-frequency methods to delineate such minor global damage.

5.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746392

RESUMO

As innovative technologies emerge, extensive research has been undertaken to develop new structural health monitoring procedures. The current methods, involving on-site visual inspections, have proven to be costly, time-consuming, labor-intensive, and highly subjective for assessing the safety and integrity of civil infrastructures. Mobile and stationary LiDAR (Light Detection and Ranging) devices have significant potential for damage detection, as the scans provide detailed geometric information about the structures being evaluated. This paper reviews the recent developments for LiDAR-based structural health monitoring, in particular, for detecting cracks, deformation, defects, or changes to structures over time. In this regard, mobile laser scanning (MLS) and terrestrial laser scanning (TLS), specific to structural health monitoring, were reviewed for a wide range of civil infrastructure systems, including bridges, roads and pavements, tunnels and arch structures, post-disaster reconnaissance, historical and heritage structures, roofs, and retaining walls. Finally, the existing limitations and future research directions of LiDAR technology for structural health monitoring are discussed in detail.


Assuntos
Lasers , Luz
6.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459034

RESUMO

Road condition monitoring (RCM) has been a demanding strategic research area in maintaining a large network of transport infrastructures. With advancements in computer vision and data mining techniques along with high computing resources, several innovative pavement distress evaluation systems have been developed in recent years. The majority of these technologies employ next-generation distributed sensors and vision-based artificial intelligence (AI) methodologies to evaluate, classify and localize pavement distresses using the measured data. This paper presents an exhaustive and systematic literature review of these technologies in RCM that have been published from 2017-2022 by utilizing next-generation sensors, including contact and noncontact measurements. The various methodologies and innovative contributions of the existing literature reviewed in this paper, together with their limitations, promise a futuristic insight for researchers and transport infrastructure owners. The decisive role played by smart sensors and data acquisition platforms, such as smartphones, drones, vehicles integrated with non-intrusive sensors, such as RGB, and thermal cameras, lasers and GPR sensors in the performance of the system are also highlighted. In addition to sensing, a discussion on the prevalent challenges in the development of AI technologies as well as potential areas for further exploration paves the way for an all-inclusive and well-directed futuristic research on RCM.


Assuntos
Inteligência Artificial , Smartphone , Computadores , Mineração de Dados
8.
Sci Rep ; 11(1): 23050, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845287

RESUMO

Information from camera traps is used for inferences on species presence, richness, abundance, demography, and activity. Camera trap placement design is likely to influence these parameter estimates. Herein we simultaneously generate and compare estimates obtained from camera traps (a) placed to optimize large carnivore captures and (b) random placement, to infer accuracy and biases for parameter estimates. Both setups recorded 25 species when same number of trail and random cameras (n = 31) were compared. However, species accumulation rate was faster with trail cameras. Relative abundance indices (RAI) from random cameras surrogated abundance estimated from capture-mark-recapture and distance sampling, while RAI were biased higher for carnivores from trail cameras. Group size of wild-ungulates obtained from both camera setups were comparable. Random cameras detected nocturnal activities of wild ungulates in contrast to mostly diurnal activities observed from trail cameras. Our results show that trail and random camera setup give similar estimates of species richness and group size, but differ for estimates of relative abundance and activity patterns. Therefore, inferences made from each of these camera trap designs on the above parameters need to be viewed within this context.

9.
J Med Eng Technol ; 42(8): 628-638, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30932715

RESUMO

This study examined the effect of a spring-loaded cane stiffness reduction on upper and lower extremity ground reaction forces in time and frequency domain during cane-aided walking. Twenty-nine participants walked five times over two force plates with a spring-loaded cane set at four different stiffnesses and T-scope knee brace set at 30° of knee flexion to simulate a foot injury. Time-frequency domain analyses revealed an increase in ground reaction forces at the simulated injured foot and a decrease in ground reaction forces at the hand via the shaft of the cane for each spring loaded-cane stiffness reduction during walking. The results build on existing literature and highlight the use of spring-loaded canes, braking and propulsive ground reaction force measures, and frequency domain analysis to more accurately assess and monitor the rehabilitation and prevention of upper and lower extremity injuries during cane-aided walking.


Assuntos
Bengala , Extremidade Inferior/fisiologia , Extremidade Superior/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Traumatismos do Pé/fisiopatologia , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...