Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 256: 155227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490099

RESUMO

For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Antígenos de Diferenciação/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166714, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028606

RESUMO

Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.


Assuntos
Cardiomiopatias , Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , Neuropatias Diabéticas , Humanos , Nefropatias Diabéticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/uso terapêutico , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Fibrose , Inflamação
3.
Biomed Pharmacother ; 160: 114392, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804123

RESUMO

Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.


Assuntos
Paclitaxel , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/química , Taxoides/farmacologia , Taxoides/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...