Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 97(12): 1324-1330, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29975849

RESUMO

The objective of this study was to introduce a functionally graded (FG) polymer-infiltrated ceramic network (PICN) block, characterized by a gradient of mechanical properties, as a biomimetic material for computer-aided design and manufacturing (CAD-CAM) prostheses. FG-PICN blocks were manufactured from a slurry of glass-ceramic powder, which was subsequently centrifuged and sintered. The ceramic network was infiltrated with urethane dimethacrylate and polymerized under high temperature-pressure. Blocks were sectioned into 9 layers, and each layer was subsequently cut into 3 samples. Samples were loaded into a 3-point bending device and tested for flexural strength, flexural load energy, and flexural modulus. The volume percentage of glass-ceramic, hardness, and brittleness index were also measured and scanning electron microscopy (SEM) observations were performed. Katana translucent zirconia (HT-ZIR) and e.max-CAD (EMX) were tested for comparison. Flexural strength, flexural load energy, and Weibull modulus of FG-PICN were shown to increase from the first (enamel-like zone) to the ninth layer (dentin-like zone), while, on the contrary, flexural modulus, hardness, brittleness index, and ceramic volume percentage decreased. SEM characterization highlighted a higher porosity in layer 9 than in layer 1. Flexural strength of the dentin-like zone (372.7 ± 27.8 MPa) was similar to EMX and lower than HT-ZIR. Flexural modulus was shown to vary from 41.9 ± 5.1 to 28.6 ± 2.0 GPa from surface to depth. Flexural load energy in the dentin-like zone (27.1 ± 4.9 mJ) was significantly superior to EMX and HT-ZIR. Hardness gradient was shown to be close to tooth tissues. This work introduces FG-PICN blocks, with a gradient of mechanical and optical properties through the entire thickness of the block designed to mimic dental tissues. FG-PICN demonstrated a favorable gradient of flexural strength, elastic modulus, and, most of all, flexural load energy and hardness compared to other CAD-CAM materials, which can promote the biomechanical behavior of single-unit restorations on teeth and implants.


Assuntos
Biomimética , Cerâmica/química , Desenho Assistido por Computador , Planejamento de Prótese Dentária , Polímeros/química , Módulo de Elasticidade , Resistência à Flexão , Dureza , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Varredura , Poliuretanos/química , Porosidade , Propriedades de Superfície
2.
J Dent Res ; 97(1): 60-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28892655

RESUMO

The objective of this study was to evaluate the interfacial fracture toughness (IFT) of composite cement with dispersed filler (DF) versus polymer-infiltrated ceramic network (PICN) computer-aided design and computer-aided manufacturing (CAD-CAM) composite blocks after 2 different surface pretreatments using the notchless triangular prism (NTP) test. Two DFs (Cerasmart [CRT] and Lava Ultimate [LVA]), 2 PICNs (Enamic [ENA] and experimental PICN [EXP]), and e.max CAD lithium disilicate glass-ceramic (EMX, control) prism samples were bonded to their counterparts with Variolink Esthetic DC composite cement after either hydrofluoric acid etching (HF) or gritblasting (GR). Both procedures were followed by silanization. All samples ( n = 30 per group) were thermocycled (10,000 cycles) and tested for their IFT in a water bath at 36°C. Moreover, representative samples from each group were subjected to a developed interfacial area ratio (Sdr) measurement by profilometry and scanning electron microscopy (SEM) characterization. EXP-HF gave the highest IFT (1.85 ± 0.39 MPa·m1/2), followed by EMX-HF and ENA-HF, while CRT-HF gave the lowest (0.15 ± 0.22 MPa·m1/2). PICNs gave significantly better results with HF, and DF showed better results with GR. A 2-way analysis of variance indicated that there were significantly higher IFT and Sdr for PICNs than for DF. A positive correlation ( r² = 0.872) was found between IFT and Sdr. SEM characterization showed the specific microstructure of the surface of etched PICNs, indicating the presence of a retentive polymer-based honeycomb structure. Etching of the typical double-network microstructure of PICNs causes an important increase in the Sdr and IFT, while DF should be gritblasted. DF exhibited significantly lower Sdr and IFT values than PICNs. The present results show the important influence of the material class and surface texture, and consequently the micromechanical bond, on the adhesive interface performance of CAD-CAM composites.


Assuntos
Desenho Assistido por Computador , Colagem Dentária , Cimentos Dentários/uso terapêutico , Planejamento de Prótese Dentária , Falha de Restauração Dentária , Colagem Dentária/métodos , Planejamento de Prótese Dentária/métodos , Análise do Estresse Dentário , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
3.
J Dent Res ; 95(5): 487-95, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26933136

RESUMO

Indirect composites have been undergoing an impressive evolution over the last few years. Specifically, recent developments in computer-aided design-computer-aided manufacturing (CAD-CAM) blocks have been associated with new polymerization modes, innovative microstructures, and different compositions. All these recent breakthroughs have introduced important gaps among the properties of the different materials. This critical state-of-the-art review analyzes the strengths and weaknesses of the different varieties of CAD-CAM composite materials, especially as compared with direct and artisanal indirect composites. Indeed, new polymerization modes used for CAD-CAM blocks-especially high temperature (HT) and, most of all, high temperature-high pressure (HT-HP)-are shown to significantly increase the degree of conversion in comparison with light-cured composites. Industrial processes also allow for the augmentation of the filler content and for the realization of more homogeneous structures with fewer flaws. In addition, due to their increased degree of conversion and their different monomer composition, some CAD-CAM blocks are more advantageous in terms of toxicity and monomer release. Finally, materials with a polymer-infiltrated ceramic network (PICN) microstructure exhibit higher flexural strength and a more favorable elasticity modulus than materials with a dispersed filler microstructure. Consequently, some high-performance composite CAD-CAM blocks-particularly experimental PICNs-can now rival glass-ceramics, such as lithium-disilicate glass-ceramics, for use as bonded partial restorations and crowns on natural teeth and implants. Being able to be manufactured in very low thicknesses, they offer the possibility of developing innovative minimally invasive treatment strategies, such as "no prep" treatment of worn dentition. Current issues are related to the study of bonding and wear properties of the different varieties of CAD-CAM composites. There is also a crucial need to conduct clinical studies. Last, manufacturers should provide more complete information regarding their product polymerization process, microstructure, and composition, which significantly influence CAD-CAM material properties.


Assuntos
Resinas Compostas/química , Desenho Assistido por Computador , Materiais Dentários/química , Cerâmica/química , Colagem Dentária/métodos , Humanos , Fenômenos Mecânicos , Polimerização , Pressão , Temperatura
4.
J Dent Res ; 93(12): 1232-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344335

RESUMO

Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials.


Assuntos
Resinas Compostas/química , Desenho Assistido por Computador , Materiais Dentários/química , Planejamento de Prótese Dentária , Fenômenos Químicos , Propriedades de Superfície
5.
Dent Mater ; 30(2): 105-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238558

RESUMO

OBJECTIVES: The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). METHODS: The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. RESULTS: The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. SIGNIFICANCE: Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance.


Assuntos
Óxido de Alumínio/química , Cerâmica , Facetas Dentárias , Estresse Mecânico , Ítrio/química , Zircônio/química , Microscopia Eletrônica de Varredura
6.
J Dent Res ; 93(1): 62-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186559

RESUMO

The aim of this study was to produce composite blocks (CB) for CAD/CAM applications by high-temperature-pressure (HT/HP) polymerization of resin-infiltrated glass-ceramic networks. The effect of network sintering and the absence/presence of initiator was investigated. Mechanical properties were determined and compared with those of Paradigm MZ100 (3M ESPE) blocks and HT/HP polymerized experimental "classic" CB, in which the filler had been incorporated by conventional mixing. The networks were made from glass-ceramic powder (VITA Zahnfabrik) formed by slip casting and were either sintered or not. They were silanized, infiltrated by urethane dimethacrylate, with or without initiator, and polymerized under HT/HP (300 MPa, 180°C) to obtain resin-infiltrated glass-ceramic network (RIGCN) CB. HT/HP polymerized CB were also made from an experimental "classic" composite. Flexural strength (σf), fracture toughness (KIC), and Vickers hardness were determined and analyzed by one- or two-way analysis of variance (ANOVA), Scheffé multiple-means comparisons (α = 0.05), and Weibull statistics (for σf). Fractured surfaces were characterized with scanning electron microscopy. The mechanical properties of RIGCN CB were significantly higher. Sintering induced significant increases in σf and hardness, while the initiator significantly decreased hardness. The results suggested that RIGCN and HT/HP polymerization could be used to obtain CB with superior mechanical properties, suitable for CAD/CAM applications.


Assuntos
Cerâmica/química , Resinas Compostas/química , Materiais Dentários/química , Silicatos de Alumínio/química , Varredura Diferencial de Calorimetria , Desenho Assistido por Computador , Porcelana Dentária/química , Módulo de Elasticidade , Dureza , Temperatura Alta , Humanos , Teste de Materiais , Fenômenos Mecânicos , Metacrilatos/química , Microscopia Eletrônica de Varredura , Maleabilidade , Polimerização , Poliuretanos/química , Compostos de Potássio/química , Pressão , Silanos/química , Estresse Mecânico , Propriedades de Superfície , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...