Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(15)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154127

RESUMO

Optically active point defects in semiconductors have received great attention in the field of solid-state quantum technologies. Hexagonal boron nitride, with an ultra-wide band gapEg= 6 eV, containing a negatively charged boron vacancy (VB-) with unique spin, optical, and coherent properties presents a new two-dimensional platform for the implementation of quantum technologies. This work establishes the value ofVB-spin polarization under optical pumping withλext= 532 nm laser using high-frequency (νmw= 94 GHz) electron paramagnetic resonance (EPR) spectroscopy. In optimal conditions polarization was found to beP≈ 38.4%. Our study reveals that Rabi oscillations induced on polarized spin states persist for up to 30-40µs, which is nearly two orders of magnitude longer than what was previously reported. Analysis of the coherent electron-nuclear interaction through the observed electron spin echo envelope modulation made it possible to detect signals from remote nitrogen and boron nuclei, and to establish a corresponding quadrupole coupling constantCq= 180 kHz related to nuclear quadrupole moment of14N. These results have fundamental importance for understanding the spin properties of boron vacancy.

2.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269340

RESUMO

Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of ß-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by ß-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both ß-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1-50 µm, pore sizes of 1-10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4-1.4 µm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism's growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...