Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 8: 763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005610

RESUMO

Soybean hulls are one of the by-products of soybean crushing and find application mainly in the animal feed sector. Nevertheless, soybean hulls have been already exploited as source of peroxidase (soybean peroxidase, SBP), an enzyme adopted in a wide range of applications such as bioremediation and wastewater treatment, biocatalysis, diagnostic tests, therapeutics and biosensors. In this work, the soybean hulls after the SBP extraction, destined to become a putrescible waste, were recovered and employed as adsorbents for water remediation due to their cellulose-based composition. They were studied from a physicochemical point of view using different characterization techniques and applied for the adsorption of five inorganic ions [Fe(III), Al(III), Cr(III), Ni(II), and Mn(II)] in different aqueous matrixes. The behavior of the exhausted soybean hulls was compared to pristine hulls, demonstrating better performances as pollutant adsorbents despite significant changes in their features, especially in terms of surface morphology, charge and composition. Overall, this work evidences that these kinds of double-recovered scraps are an effective and sustainable alternative for metal contaminants removal from water.

2.
Front Chem ; 8: 550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793547

RESUMO

Alumina porous monoliths were successfully fabricated using a simple and reproducible synthesis dispersing gamma alumina phase from commercial boehmite (GAB) in water containing water-soluble bio-based substances (BBSs) obtained from composted biowaste. The wet mixture obtained was shaped in form of small spheres and then dried and calcined at 500°C in order to burn the organic matter and obtain mesoporous monoliths. They were successively functionalized with BBSs in order to introduce BBS functional groups and obtain an efficient adsorbing system. Therefore, in this work, BBSs acted as template/binder for the production of monoliths and as functionalizing agent of the produced monoliths. The reference powders, deeply studied in a published article (Sadraei et al., 2019b), and the monoliths of GAB before and after functionalization were characterized by means of x-ray diffraction to evidence their crystal structure, Fourier transform infrared spectroscopy for evaluating the presence of BBSs on the supports, thermogravimetric analysis to measure the thermal stability of the materials and quantify the functionalizing BBS amount immobilized on the supports, nitrogen adsorption at 77 K for the investigation of the surface area and porosity of the systems, and zeta potential measurements to analyze the effect of BBS immobilization on the surface charge of the supports and to predict the type of interaction, which can be established with substrates. Finally, the systems were applied in removal of pollutants with different charge, polarity, and molecular structure, such as dyes (crystal violet and acid orange 7) and contaminants of emerging concern (carbamazepine and atenolol). Only the cationic dye CV is captured by the adsorbing material, and this allows envisaging a possible use of the functionalized monoliths for selective adsorption of cationic substrates.

3.
Nanomaterials (Basel) ; 9(5)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083562

RESUMO

For the first time, γ-Al2O3 and Bio-Based Substances (BBS) hybrids (A-BBS) were prepared through a simple electrostatic interaction occurring between alumina, used as a support, and BBS (Bio-Based Substance from composted biowastes) carrying positive and negative charges, respectively. We evaluated the optimal amount of BBS to be immobilized on the support and the stability of the resulting A-BBS in order to use this novel hybrid material as an adsorbent for the removal of polar pollutants. Characterization was carried out by X-Ray Diffraction (XRD) for evaluating the crystal structure of the support, Fourier transform infrared spectroscopy (FT-IR) to evidence the presence of BBS on the hybrid material, thermogravimetric analysis (TGA) to measure the thermal stability of the hybrid materials and quantify the BBS amount immobilized on the support, N2 adsorption at 77 K for the evaluation of the surface area and porosity of the systems, Zeta potential measurements to evaluate the effect of BBS immobilization on the surface charge of the particles and choose the substrates possibly interacting with them. Firstly, we tested the adsorption capability of three samples differently coated with BBS toward cationic species considering various adsorbate/adsorbent ratio. Crystal Violet (CV) was chosen as model pollutant to compare the performance of the hybrid materials with those of other materials described in the literature. The adsorption data were modeled by Langmuir and Freundlich adsorption isotherms. Then, we studied the adsorption capability of the developed material towards molecules with different structures; for this purpose, two contaminants of emerging concerns (carbamazepine and atenolol) were tested. The results indicate that A-BBS could be applied in wastewater treatment for the removal of a significant amount of polar species. In addition, a comparison with literature data concerning CV adsorption was carried out in order to evaluate the environmental impact of synthetic routes used to prepare different adsorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...