Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 72(3): 260-71, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11401441

RESUMO

Skeletal muscle is able to respond to a range of stimuli, including stretch and increased load, by increasing in diameter and length in the absence of myofiber division. This type of cellular growth (hypertrophy) is a highly complex process involving division of muscle precursor cells (myoblasts) and their fusion to existing muscle fibers as well as increased protein synthesis and decreased protein degradation. Underlying the alterations in protein levels are increases in a range of specific mRNAs including those coding for structural proteins and proteins that regulate the hypertrophic process. Seven days of passive stretch in vivo of tibialis anterior (TA) muscle has been shown to elicit muscle hypertrophy. We have identified a cDNA corresponding to an mRNA that exhibits increased expression in response to 7 days of passive stretch imposed on TA muscles in vivo. This 944-bp novel murine transcript is expressed primarily in cardiac and skeletal muscle and to a lesser extent in brain. Translation of the transcript revealed an open reading frame of 85 amino acids encoding a nuclear localization signal and two overlapping casein kinase II phosphorylation sites. This gene has been called "small muscle protein (X chromosome)" (Smpx; HGMW-approved human gene symbol SMPX) and we hypothesize that it plays a role in skeletal muscle hypertrophy.


Assuntos
Proteínas Musculares , Músculo Esquelético/metabolismo , Porinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Diferenciação Celular/genética , Mapeamento Cromossômico , DNA Complementar/química , DNA Complementar/genética , Embrião de Mamíferos/metabolismo , Éxons , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Íntrons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Músculo Esquelético/citologia , Porinas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Organismos Livres de Patógenos Específicos , Estresse Mecânico , Distribuição Tecidual , Cromossomo X/genética
2.
Genomics ; 73(1): 38-49, 2001 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11352564

RESUMO

In response to extended periods of stretch, skeletal muscle typically exhibits cell hypertrophy associated with sustained increases in mRNA and protein synthesis. Several soluble hypertrophic agonists have been identified, yet relatively little is known as to how mechanical load is converted into intracellular signals regulating gene expression or how increased cell size is maintained. In skeletal muscle, hypertrophy is generally regarded as a beneficial adaptive response to increased workload. In some cases, however, hypertrophy can be detrimental as seen in long-term cardiac hypertrophy. Skeletal muscle wasting (atrophy) is a feature of both inherited and acquired muscle disease and normal aging. Elucidating the molecular regulation of cell size is a fundamental step toward comprehending the complex molecular systems underlying muscle hypertrophy and atrophy. Subtractive hybridization between passively stretched and control murine skeletal muscle tissue identified an mRNA that undergoes increased expression in response to passive stretch. Encoded within the mRNA is an open reading frame of 311 amino acids containing a highly conserved type 1 peroxisomal targeting signal and a serine lipase active center. The sequence shows identity to a family of serine hydrolases and thus is named serine hydrolase-like (Serhl). The predicted three-dimensional structure displays a core alpha/beta-hydrolase fold and catalytic triad characteristic of several hydrolytic enzymes. Endogenous Serhl protein immunolocalizes to perinuclear vesicles as does Serhl-FLAG fusion protein transiently expressed in muscle cells in vitro. Overexpression of Serhl-FLAG has no effect on muscle cell phenotype in vitro. Serhl's expression patterns and its response to passive stretch suggest that it may play a role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/enzimologia , Serina Endopeptidases/análise , Serina Endopeptidases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Técnicas de Cultura de Células , Clonagem Molecular , DNA , Indução Enzimática , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Contração Muscular , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/biossíntese , Serina Endopeptidases/metabolismo
3.
Genomics ; 66(3): 229-41, 2000 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10873377

RESUMO

Mechanically induced hypertrophy of skeletal muscles involves shifts in gene expression leading to increases in the synthesis of specific proteins. Full characterization of the regulation of muscle hypertrophy is a prerequisite for the development of novel therapies aimed at treating muscle wasting (atrophy) in human aging and disease. Using suppression subtractive hybridization, cDNAs corresponding to mRNAs that increase in relative abundance in response to mechanical stretch of mouse skeletal muscles in vivo were identified. A novel 1100-bp transcript was detected exclusively in skeletal muscle. This exhibited a fourfold increase in expression after 7 days of stretch. The transcript had an open reading frame of 328 amino acids encoding an ATP/GTP binding domain, a nuclear localization signal, two PEST protein-destabilization motifs, and a 132-amino-acid ankyrin-repeat region. We have named this gene ankyrin-repeat domain 2 (stretch-responsive muscle) (Ankrd2). We hypothesize that Ankrd2 plays an important role in skeletal muscle hypertrophy.


Assuntos
Repetição de Anquirina/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Éxons , Expressão Gênica , Biblioteca Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Proteínas Nucleares , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...