Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 18074-18086, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976839

RESUMO

Graphene is an excellent choice for heating applications due to its high thermal conductivity and is considered an interesting candidate for application in flexible heaters. The major challenge, though, is the costly and chemical-intensive pathways to produce graphene on a large scale. Laser ablation of polymeric substrates is a relatively recent technique for a facile, single-step, chemical-free fabrication of graphene, referred to as laser-induced graphene (LIG). This work demonstrates the fabrication of patterned LIG-based flexible heaters and their response to radio frequency (RF) electromagnetic waves. Polymeric substrates were scribed with laser patterns in both raster and vector modes and subjected to RF electromagnetic fields to test their heating response. We confirmed different graphene morphologies of the lased patterns through various materials characterization methods. The maximum steady-state temperature observed for the LIG heater was approximately 500 °C. Unprecedented heating rates, as high as 502 °C/s, were observed when LIG heaters were exposed to RF fields at 200 MHz frequency and 4.6 W power. Mechanical and thermal stability tests for the best heater were also performed showing a stable thermal response for 1000 bending cycles and 20 cycles of the heating test for 8.5 h, respectively. Our work suggests that LIG heaters produced in vector mode lasing outperformed those lased in raster mode which can be attributed to the improved graphene quality for RF absorbance.

2.
ACS Appl Mater Interfaces ; 14(38): 43732-43740, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121103

RESUMO

The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Bactérias , COVID-19/prevenção & controle , Detergentes , Calefação , Humanos , Pandemias , Polímeros , Têxteis/microbiologia , Inativação de Vírus
3.
Comput Inform Nurs ; 40(8): 547-553, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234705

RESUMO

This study aimed to examine the relationship between nursing informatics competencies and clinical decision-making by taking into account nurses' individual characteristics and job-related characteristics. A cross-sectional design was used. The cluster random sampling method was adopted to select 14 governmental hospitals in West Bank, Palestine, in which all nurses in these hospitals were invited to participate in this study. Results found that the total mean (SD) score for the nursing informatics competency scale was 2.6 (0.88), which indicates that the nurses had lower nursing informatics competency, and the informatics skills subscale had the lowest mean score (mean [SD], 2.4 [1.00]). Concerning clinical decision-making, the total mean (SD) score was 2.59 (0.38), which indicates that the nurses had lower clinical decision-making. Regarding clinical decision-making subscales, searching for information and unbiased assimilation of new information had the highest mean score (mean [SD], 2.64 [0.39]); on the contrary, the canvassing of objectives and values subscale had the lowest mean score (mean [SD], 2.53 [0.38]). Nursing informatics competency had a positive relationship with clinical decision-making. Thus, it is necessary to enhance nurses' informatics competency, especially informatics skills and clinical decision-making, by developing training programs about this technology directed to nurses.


Assuntos
Informática em Enfermagem , Tomada de Decisão Clínica , Estudos Transversais , Humanos , Oriente Médio , Inquéritos e Questionários
4.
ACS Appl Mater Interfaces ; 11(49): 46132-46139, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730325

RESUMO

Silicon carbide (SiC) fibers are widely used as a reinforcement in ceramic matrix composites due to their high mechanical strength and superior thermal resistance. Here, we investigate the rapid radio frequency (RF) heating response of two types of SiC fibers (Hi-Nicalon and Sylramic) in the 1-200 MHz frequency range. Hi-Nicalon fibers exhibit a surprisingly rapid RF heating response of 240 °C/s in the perpendicular orientation, and this property could be exploited for oven-free and noncontact processing of composites with SiC fibers. The presence of excess carbon on the surface of Hi-Nicalon fibers is most likely responsible for the RF heating response and significantly higher temperatures in the parallel as compared to perpendicular alignment of fibers to the electric field. The RF heating response of Hi-Nicalon SiC fibers was utilized to heat preceramic polymers (polycarbosilanes) infiltrated in SiC fibers and cure them to ceramic matrix composites (CMCs) using RF applicators. A noncontact RF heating setup to pyrolyze the precursor polymers under inert conditions and make SiC/SiC composites is also developed.

5.
Nanoscale ; 11(19): 9617-9625, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31065650

RESUMO

Here we report the effect of metallic (m-) and semiconducting (s-) properties of single-walled carbon nanotubes (SWCNTs) on the response of SWCNT films to radio frequency (RF) heating. We separated high-purity m- and s-SWCNTs from an initial SWCNTs mixture and prepared thin films using vacuum filtration method. The areal density of the films is 9.6 µg cm-2, and the DC conductivities are in the range of 7800-49 000 S m-1. We show rapid and non-contact Joule heating of films using a fringing-field RF applicator, and we observe maximum heating rates in the frequency range of 60-70 MHz. We determine that the more conductive m-SWCNT films reflect RF fields and heat at a maximum rate of 1.51 °C s-1 compared to maximum heating rate of 25.6 °C s-1 for s-SWCNT films. However, m-SWCNTs heat up faster than s-SWCNTs when dispersed in a dielectric medium. Our results confirm the non-monotonic relationship between RF heating rate and conductivity for CNT-based materials such that conductivity is required for heating but high values are correlated with reflections. Our findings also suggest that RF heating could be a possible metric for evaluating film purity because impurities in the films affect the conductivity and thus RF heating rate. We anticipate that RF heating may occur in SWCNT-based electronics and affect their performance.

6.
ACS Appl Mater Interfaces ; 10(32): 27252-27259, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30039965

RESUMO

Here, we give the first-ever report of radio frequency (RF) electromagnetic heating of polymer nanocomposite materials via direct-contact and capacitively coupled electric field applicators. Notably, RF heating allows nanocomposite materials to be resistively heated with electric fields. We highlight our novel RF heating technique for multiwalled carbon nanotube (MWCNT) thermoplastic composites and measure their broadband dielectric properties. We also demonstrate three different electric field applicator configurations and discuss their practical use in an industrial setting. We demonstrate the use of RF heating to cure an automotive-grade epoxy loaded with MWCNTs. Our results show that lap shear joints cured faster with the RF method compared with control samples cured in an oven because of the heat-transfer advantages of directly heating the epoxy composite. Finally, we implement our RF curing technique to assemble an automotive structure by locally curing an epoxy adhesive applied to a truck chassis.

7.
Environ Sci Technol ; 52(2): 794-800, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29261302

RESUMO

The increase in use of nanomaterials such as multiwalled carbon nanotubes (MWCNTs) presents a need to study their interactions with the environment. Trophic transfer was measured between Daphnia magna and Pimephales promelas (fathead minnow, FHM) exposed to MWCNTs with different outer diameter (OD) sizes (MWCNT1 = 8-15 nm OD and MWCNT2 = 20-30 nm OD) in the presence and absence of copper. Pristine FHM were fed D. magna, previously exposed for 3 d to MWCNT1 or MWCNT2 (0.1 mg/L) and copper (0.01 mg/L), for 7 d. D. magna bioaccumulated less MWCNT1 (0.02 µg/g) than MWCNT2 (0.06 µg/g), whereas FHM accumulated more MWCNT1 (0.81 µg/g) than MWCNT2 (0.04 µg/g). In the presence of copper, MWCNT bioaccumulation showed an opposite trend. Mostly MWCNT1 (0.03 µg/g) bioaccumulated in D. magna, however less MWCNT1 (0.21 µg/g) than MWCNT2 (0.32 µg/g) bioaccumulated in FHM. Bioaccumulation factors were higher for MWCNT1s than MWCNT2. However, an opposite trend was observed when copper was added. Plasma metallothionein-2 was measured among treatments; however concentrations were not statistically different from the control. This study demonstrates that trophic transfer of MWCNTs is possible in the aquatic environment and further exploration with mixtures can strengthen the understanding of MWCNT environmental behavior.


Assuntos
Cyprinidae , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Cobre , Daphnia , Íons
8.
Sci Adv ; 3(6): e1700262, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630927

RESUMO

Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks.

9.
Environ Toxicol Chem ; 36(8): 2199-2204, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28160491

RESUMO

The use of carbon-based nanomaterials (CNMs) such as multiwalled carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO) is increasing across many applications because of their unique and versatile properties. These CNMs may enter the aquatic environment through many pathways, creating the potential for organism exposure. The present study addresses the bioaccumulation and toxicity seen in Daphnia magna exposed to CNMs dispersed in sodium dodecyl benzene sulfonate (SDBS). In study I, D. magna were exposed to varying outer diameters of MWCNTs for 24 h in moderately hard or hard freshwater. Bioaccumulation of MWCNT was found in all treatments, with the highest concentrations (0.53 ± 0.27 µg/g) in D. magna exposed in hard freshwater (p < 0.005). The median lethal concentration (LC50) was determined for D. magna exposed to CNMs in moderately hard and hard freshwater. In study II, D. magna were exposed to CNMs for 72 h in moderately hard freshwater to assess swimming velocity and generation of reactive oxygen species (ROS) detected by dichlorofluorescein fluorescence. An overall decrease was seen in D. magna swimming velocity after exposure to CNMs. The generation of ROS was significantly higher (1.54 ± 0.38 dichlorofluorescein mM/mg dry wt) in D. magna exposed to MWCNTs of smaller outer diameters than in controls after 72 h (p < 0.05). These results suggest that further investigation of CNM toxicity and behavior in the aquatic environment is needed. Environ Toxicol Chem 2017;36:2199-2204. © 2017 SETAC.


Assuntos
Daphnia/efeitos dos fármacos , Grafite/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Benzenossulfonatos/toxicidade , Daphnia/metabolismo , Monitoramento Ambiental , Água Doce/química , Grafite/metabolismo , Dose Letal Mediana , Óxidos , Espécies Reativas de Oxigênio/metabolismo , Natação , Poluentes Químicos da Água/metabolismo
10.
Chemosphere ; 152: 117-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26966810

RESUMO

Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 µg/g), with minimal accumulation in stems and leaves (2-10 µg/g) with a limit of detection at 0.1 µg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure.


Assuntos
Nanotubos de Carbono/análise , Poluentes do Solo/análise , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Humanos , Nanotubos de Carbono/toxicidade , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Água/análise , Zea mays/química , Zea mays/crescimento & desenvolvimento
11.
Opt Lett ; 38(14): 2382-4, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23939055

RESUMO

We report metamaterial terahertz (THz) bandpass filters with tunable dual-band selectivity. The shift in the center frequency of the device is achieved by actively modifying the effective length of the resonators. This was realized by introducing vanadium dioxide (VO2) bridges interconnecting specific regions of each resonator. Raising the temperature across the phase transition shifted the resonance frequency by ~32% due to changes in the electrical conductivity of the VO2. Measured THz transmission response of the proposed dual-band filter was in good correspondence with simulations.

12.
Opt Lett ; 37(3): 296-8, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297331

RESUMO

Bandpass filters are reported based on double-stacked metamaterial layers separated by an air gap for operation at terahertz frequencies. Several stacking configurations were investigated designed for a ~0.5 THz center frequency. The filters exhibited improved spectral transmission properties when compared with conventional ones based on single metamaterial layers. 3 dB bandwidth of ~78 GHz and sidelobe suppression ratio >16 dB were determined when symmetric or asymmetric double layers were stacked. We demonstrate that superior frequency selectivity can be achieved when metamaterial layers with different unit cells are used. Good agreement was found between measured and simulated transmission response.


Assuntos
Modelos Teóricos , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...