Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135840

RESUMO

Membrane fouling significantly hinders the widespread application of membrane technology. In the current study, a support vector machine (SVM) and artificial neural networks (ANN) modelling approach was adopted to optimize the membrane permeability in a novel membrane rotating biological contactor (MRBC). The MRBC utilizes the disk rotation mechanism to generate a shear rate at the membrane surface to scour off the foulants. The effect of operational parameters (disk rotational speed, hydraulic retention time (HRT), and sludge retention time (SRT)) was studied on the membrane permeability. ANN and SVM are machine learning algorithms that aim to predict the model based on the trained data sets. The implementation and efficacy of machine learning and statistical approaches have been demonstrated through real-time experimental results. Feed-forward ANN with the back-propagation algorithm and SVN regression models for various kernel functions were trained to augment the membrane permeability. An overall comparison of predictive models for the test data sets reveals the model's significance. ANN modelling with 13 hidden layers gives the highest R2 value of >0.99, and the SVM model with the Bayesian optimizer approach results in R2 values higher than 0.99. The MRBC is a promising substitute for traditional suspended growth processes, which aligns with the stipulations of ecological evolution and environmentally friendly treatment.

2.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591380

RESUMO

Aluminum waste-can management in Malaysia has recently become a serious environmental and public health issue, particularly in metropolitan areas. This has prompted the need to valorize these waste-cans into value-added products using the most economical and environmentally friendly techniques. In this study, the sol-gel technique was used to synthesize high-quality alumina from the aluminum waste-cans collected. From this method, the observed peaks of the synthesized alumina were identified as diaspore (α-AlO(OH)), boehmite (γ-AlO(OH)), aluminum oxide, or gamma-alumina (γ-Al2O3) crystalline structure and corundum. The morphological configuration, microstructure, and functional group properties of the synthesized alumina were evaluated. All the synthesized alumina exhibited a non-spherical shape and appeared to have hexagonal-like shape particles. Moreover, the XRD patterns of the synthesized alumina AL-6-30 and AL-12-30 exhibited a small angle (1-10°) with no XRD peak, which indicated a mesoporous pore structure with no long-range order. The overall results of γ-alumina synthesized from the aluminum waste-cans showed an optimal condition in producing a highly structured γ-alumina with excellent surface-area characteristics. The synthesized alumina exhibited stronger and highly crystalline functional characteristics almost comparable with the commercially available brands on the market.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335824

RESUMO

It is necessary to sustain energy from an external reservoir or employ advanced technologies to enhance oil recovery. A greater volume of oil may be recovered by employing nanofluid flooding. In this study, we investigated oil extraction in a two-phase incompressible fluid in a two-dimensional rectangular porous homogenous area filled with oil and having no capillary pressure. The governing equations that were derived from Darcy's law and the mass conservation law were solved using the finite element method. Compared to earlier research, a more efficient numerical model is proposed here. The proposed model allows for the cost-effective study of heating-based inlet fluid in enhanced oil recovery (EOR) and uses the empirical correlations of the nanofluid thermophysical properties on the relative permeability equations of the nanofluid and oil, so it is more accurate than other models to determine the higher recovery factor of one nanoparticle compared to other nanoparticles. Next, the effect of nanoparticle volume fraction on flooding was evaluated. EOR via nanofluid flooding processes and the effect of the intake temperatures (300 and 350 K) were also simulated by comparing three nanoparticles: SiO2, Al2O3, and CuO. The results show that adding nanoparticles (<5 v%) to a base fluid enhanced the oil recovery by more than 20%. Increasing the inlet temperature enhanced the oil recovery due to changes in viscosity and density of oil. Increasing the relative permeability of nanofluid while simultaneously reducing the relative permeability of oil due to the presence of nanoparticles was the primary reason for EOR.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34360240

RESUMO

Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.


Assuntos
Hibiscus , Poluentes Químicos da Água , Adsorção , Cádmio , Carvão Vegetal , Cinética , Fenômenos Magnéticos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Materials (Basel) ; 14(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442978

RESUMO

Several agro-waste materials have been utilized for sustainable engineering and environmental application over the past decades, showing different degrees of effectiveness. However, information concerning the wider use of palm oil clinker (POC) and its performance is still lacking. Therefore, as a solid waste byproduct produced in one of the oil palm processing stages, generating a huge quantity of waste mostly dumped into the landfill, the waste-to-resource potential of POC should be thoroughly discussed in a review. Thus, this paper provides a systematic review of the current research articles on the several advances made from 2005 to 2021 regarding palm oil clinker physical properties and performances, with a particular emphasis on their commitments to cost savings during environmental and engineering applications. The review begins by identifying the potential of POC application in conventional and geopolymer structural elements such as beams, slabs, and columns made of concrete, mortar, or paste for coarse aggregates, sand, and cement replacement. Aspects such as performance of POC in wastewater treatment processes, fine aggregate and cement replacement in asphaltic and bituminous mixtures during highway construction, a bio-filler in coatings for steel manufacturing processes, and a catalyst during energy generation are also discussed. This review further describes the effectiveness of POC in soil stabilization and the effect of POC pretreatment for performance enhancement. The present review can inspire researchers to find research gaps that will aid the sustainable use of agroindustry wastes. The fundamental knowledge contained in this review can also serve as a wake-up call for researchers that will motivate them to explore the high potential of utilizing POC for greater environmental benefits associated with less cost when compared with conventional materials.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34201674

RESUMO

Driving fatigue is a serious issue for the transportation sector, decreasing the driver's performance and increasing accident risk. This study aims to investigate how fatigue mediates the relationship between the nature of work factors and driving performance. The approach included a review of the previous studies to select the dimensional items for the data collection instrument. A pilot test to identify potential modification to the questionnaire was conducted, then structural equation modelling (SEM) was performed on a stratified sample of 307 drivers, to test the suggested hypotheses. Based on the results, five hypotheses have indirect relationships, four of which have a significant effect. Besides, the results show that driving fatigue partially mediates the relationship between the work schedule and driving performance and fully mediates in the relationship between work activities and driving performance. The nature of work and human factors is the most common reason related to road accidents. Therefore, the emphasis on driving performance and fatigue factors would thereby lead to preventing fatal crashes and life loss.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Fadiga/epidemiologia , Humanos , Admissão e Escalonamento de Pessoal , Inquéritos e Questionários , Meios de Transporte
7.
Materials (Basel) ; 14(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070195

RESUMO

This paper introduces a new spark plasma sintering technique that is able to order crystalline anisotropy by in-series/in situ DC electric coupled magnetic field. The process control parameters have been investigated on the production of anisotropic BaFe12O19 magnets based on resulted remanence (Mr). Sintering holding time (H.T.), cooling rate (C.R.), pressure (P), and sintering temperature (S.T.) are optimized by Taguchi with L9 orthogonal array (OA). The remanent magnetization of nanocrystalline BaFe12O19 in parallel (Mrǁ) and perpendicular (MrꞱ) to the applied magnetic field was regarded as a measure of performance. The Taguchi study calculated optimum process parameters, which significantly improved the sintering process based on the confirmation tests of BaFe12O19 anisotropy. The magnetic properties in terms of Mrǁ and MrꞱ were greatly affected by sintering temperature and pressure according to ANOVA results. In addition, regression models were developed for predicting the Mrǁ as well as MrꞱ respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...