Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1408202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966143

RESUMO

Pepino (Solanum muricatum) is an herbaceous crop phylogenetically related to tomato and potato. Pepino fruit vary in color, size and shape, and are eaten fresh. In this study, we use pepino as a fruit model to understand the transcriptional regulatory mechanisms controlling fruit quality. To identify the key genes involved in anthocyanin biosynthesis in pepino, two genotypes were studied that contrasted in foliar and fruit pigmentation. Anthocyanin profiles were analyzed, as well as the expression of genes that encode enzymes for anthocyanin biosynthesis and transcriptional regulators using both RNA-seq and quantitative PCR. The differential expression of the transcription factor genes R2R3 MYB SmuMYB113 and R3MYB SmuATV suggested their association with purple skin and foliage phenotype. Functional analysis of these genes in both tobacco and pepino showed that SmuMYB113 activates anthocyanins, while SmuATV suppresses anthocyanin accumulation. However, despite elevated expression in all tissues, SmuMYB113 does not significantly elevate flesh pigmentation, suggesting a strong repressive background in fruit flesh tissue. These results will aid understanding of the differential regulation controlling fruit quality aspects between skin and flesh in other fruiting species.

2.
J Cell Commun Signal ; 17(4): 1229-1247, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973719

RESUMO

Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.

3.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166484, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35811032

RESUMO

Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.


Assuntos
Exossomos , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Lisossomos , Resposta a Proteínas não Dobradas
4.
Mol Ecol Resour ; 22(1): 345-360, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34260155

RESUMO

Bilberry (Vaccinium myrtillus L.) belongs to the Vaccinium genus, which includes blueberries (Vaccinium spp.) and cranberry (V. macrocarpon). Unlike its cultivated relatives, bilberry remains largely undomesticated, with berry harvesting almost entirely from the wild. As such, it represents an ideal target for genomic analysis, providing comparisons with the domesticated Vaccinium species. Bilberry is prized for its taste and health properties and has provided essential nutrition for Northern European indigenous populations. It contains high concentrations of phytonutrients, with perhaps the most important being the purple colored anthocyanins, found in both skin and flesh. Here, we present the first bilberry genome assembly, comprising 12 pseudochromosomes assembled using Oxford Nanopore (ONT) and Hi-C Technologies. The pseudochromosomes represent 96.6% complete BUSCO genes with an assessed LAI score of 16.3, showing a high conservation of synteny against the blueberry genome. Kmer analysis showed an unusual third peak, indicating the sequenced samples may have been from two individuals. The alternate alleles were purged so that the final assembly represents only one haplotype. A total of 36,404 genes were annotated after nearly 48% of the assembly was masked to remove repeats. To illustrate the genome quality, we describe the complex MYBA locus, and identify the key regulating MYB genes that determine anthocyanin production. The new bilberry genome builds on the genomic resources and knowledge of Vaccinium species, to help understand the genetics underpinning some of the quality attributes that breeding programs aspire to improve. The high conservation of synteny between bilberry and blueberry genomes means that comparative genome mapping can be applied to transfer knowledge about marker-trait association between these two species, as the loci involved in key characters are orthologous.


Assuntos
Vaccinium myrtillus , Antocianinas , Cromossomos , Frutas/genética , Genômica , Humanos
5.
Hortic Res ; 8(1): 233, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719690

RESUMO

The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.

6.
Front Plant Sci ; 12: 685416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335654

RESUMO

Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of 'Angelle', a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.

7.
Anal Methods ; 12(34): 4220-4228, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32812538

RESUMO

In this study, a combination of homogeneous liquid-liquid extraction and dispersive liquid-liquid microextraction based on solidification of a deep eutectic solvent has been utilized as an efficient method for the extraction of three widely used antibiotics (oxytetracycline, penicillin G, and tilmicosin) from sausage samples. In this method, initially the antibiotics are extracted from the powdered sausage sample into acetonitrile and then, to concentrate the analytes and achieve a high sensitivity, the obtained acetonitrile is mixed with an extraction solvent (a newly synthesized water-immiscible deep eutectic solvent with a melting point near room temperature), and the obtained mixture is rapidly injected into deionized water. In the next step, the mixture is transferred into an ice bath and the solidified extraction solvent containing the analytes is removed and dissolved in ACN. For quantitative analysis, this phase is taken and injected into an ion mobility spectrometer which operated in the positive mode and is equipped with a continuous corona discharge ionizer. This instrumental technique characterizes molecules based on the gaseous phase mobility of their ions formed at ambient pressure and under an electric field. Under the optimum conditions, limits of detection and quantification were achieved in the ranges of 1.52-2.73 and 5.1-9.1 ng g-1, respectively. The relative standard deviations were less than 8% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 20 ng g-1 of each analyte. Finally, the proposed method was applied to the analysis of the studied antibiotics in fifteen different sausage samples marketed in Tabriz, Iran. Oxytetracycline was determined in three of the studied sausage samples.


Assuntos
Microextração em Fase Líquida , Antibacterianos , Espectrometria de Mobilidade Iônica , Irã (Geográfico) , Extração Líquido-Líquido , Solventes
8.
J Exp Bot ; 69(9): 2379-2390, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29190381

RESUMO

Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.


Assuntos
Dioxigenases/genética , Lactonas/metabolismo , Malus/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/crescimento & desenvolvimento , Malus/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/genética
9.
Plant Physiol Biochem ; 115: 343-353, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28419960

RESUMO

Broccoli (Brassica oleracea L. var. italica) sprouts contain glucosinolates (GLs) that when hydrolysed yield health promoting isothiocyanates such as sulforaphane (SF). SF content can be increased by salt (NaCl) stress, although high salt concentrations negatively impact plant growth. Salicylic acid (SA) treatments can attenuate the negative effects of salt on growth. To test whether sprout isothiocyanate content could be elevated without sprout growth being compromised, broccoli seed were germinated and grown for seven days in salt (0, 80 and 160 mM) alone and in combination with 100 µM SA. Increasing concentrations of salt lowered transcript accumulation of GL biosynthetic genes which was reflected in lowered content of Gluconapin, 4-methoxyglucobrassicin and neoglucobrassicin glucosinolates. Other glucosinolates such as glucoraphanin did not alter significantly. Salt (160 mM) increased transcript abundance of the GL hydrolytic gene MYROSINASE (BoMYO) and its cofactor EPITHIOSPECIFIER MODIFIER1 (BoESM1) whose encoded product directs MYROSINASE to produce isothiocyanate rather than nitrile forms. SF content was increased 6-fold by the 160 mM salt treatment, but the salt treatment reduced percentage seed germination, slowed seed germination, and reduced sprout hypocotyl elongation. This growth inhibition was prevented if 100 µM SA was included with the salt treatment. These findings suggest that the increase in SF production by salt occurs in part because of increased transcript abundance of genes in the hydrolytic pathway, which occurs independently of the negative impact of salt on sprout growth.


Assuntos
Brassica/efeitos dos fármacos , Brassica/metabolismo , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Ácido Salicílico/farmacologia , Cloreto de Sódio/farmacologia , Germinação/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...