Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1232446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239827

RESUMO

The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef). Resting-state-fMRI-based functional connectivity (rs-fMRI-bfc) in ascending auditory nuclei (AAN), the primary auditory cortex (AC-I), and four other regions relevant for directing attention or regulating distress in temporal, parietal, and prefrontal cortex was compiled and compared to EEG and concurrent fNIRS activity in the same brain areas. We observed no group differences in pure-tone audiometry (PTA) between 10 and 16 kHz. However, the PTA threshold around the tinnitus pitch was positively correlated with the self-rated tinnitus loudness and also correlated with distress in T-groups, while TH experienced their tinnitus loudness at minimal loudness levels already with maximal suffering scores. The T-group exhibited prolonged auditory brain stem (ABR) wave I latency and reduced ABR wave V amplitudes (indicating reduced neural synchrony in the brainstem), which were associated with lower rs-fMRI-bfc between AAN and the AC-I, as observed in previous studies. In T-subjects, these features were linked with elevated spontaneous and reduced evoked gamma oscillations and with reduced deoxygenated hemoglobin (deoxy-Hb) concentrations in response to stimulation with lower frequencies in temporal cortex (Brodmann area (BA) 41, 42, 22), implying less synchronous auditory responses during active auditory discrimination of reference frequencies. In contrast, in the TH-group gamma oscillations and hemodynamic responses in temporoparietal regions were reversed during active discrimination of tinnitus frequencies. Our findings suggest that T and TH differ in auditory discrimination and memory-dependent directed attention during active discrimination at either tinnitus or reference frequencies, offering a test paradigm that may allow for more precise sub-classification of tinnitus and future improved treatment approaches.

3.
Front Neurol ; 12: 627522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815254

RESUMO

Although tinnitus represents a major global burden, no causal therapy has yet been established. Ongoing controversies about the neuronal pathophysiology of tinnitus hamper efforts in developing advanced therapies. Hypothesizing that the unnoticed co-occurrence of hyperacusis and differences in the duration of tinnitus may possibly differentially influence the neural correlate of tinnitus, we analyzed 33 tinnitus patients without (T-group) and 20 tinnitus patients with hyperacusis (TH-group). We found crucial differences between the T-group and the TH-group in the increase of annoyance, complaints, tinnitus loudness, and central neural gain as a function of tinnitus duration. Hearing thresholds did not differ between T-group and TH-group. In the TH-group, the tinnitus complaints (total tinnitus score) were significantly greater from early on and the tinnitus intensity distinctly increased over time from ca. 12 to 17 dB when tinnitus persisted more than 5 years, while annoyance responses to normal sound remained nearly constant. In contrast, in the T-group tinnitus complaints remained constant, although the tinnitus intensity declined over time from ca. 27 down to 15 dB beyond 5 years of tinnitus persistence. This was explained through a gradually increased annoyance to normal sound over time, shown by a hyperacusis questionnaire. Parallel a shift from a mainly unilateral (only 17% bilateral) to a completely bilateral (100%) tinnitus percept occurred in the T-group, while bilateral tinnitus dominated in the TH-group from the start (75%). Over time in the T-group, ABR wave V amplitudes (and V/I ratios) remained reduced and delayed. By contrast, in the TH-group especially the ABR wave III and V (and III/I ratio) continued to be enhanced and shortened in response to high-level sound stimuli. Interestingly, in line with signs of an increased co-occurrence of hyperacusis in the T-group over time, ABR wave III also slightly increased in the T-group. The findings disclose an undiagnosed co-occurrence of hyperacusis in tinnitus patients as a main cause of distress and the cause of complaints about tinnitus over time. To achieve urgently needed and personalized therapies, possibly using the objective tools offered here, a systematic sub-classification of tinnitus and the co-occurrence of hyperacusis is recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...