Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159902

RESUMO

Biofilm-associated infections caused by an accumulation of micro-organisms and pathogens significantly impact the environment, health risks, and the global economy. Currently, a non-biocide-releasing superhydrophobic surface is a potential solution for antibacterial purposes. This research demonstrated a well-designed robust polydimethylsiloxane (PDMS) micro-structure and a flame treatment process with improved hydrophobicity and bacterial anti-adhesion properties. After the flame treatment at 700 ± 20 °C for 15 s, unique flower-petal re-entrant nano-structures were formed on pillars (PIL-F, width: 1.87 ± 0.30 µm, height: 7.76 ± 0.13 µm, aspect ratio (A.R.): 4.14) and circular rings with eight stripe supporters (C-RESS-F, width: 0.50 ± 0.04 µm, height: 3.55 ± 0.11 µm, A.R.: 7.10) PDMS micro-patterns. The water contact angle (WCA) and ethylene glycol contact angle (EGCA) of flame-treated flat-PDMS (FLT-F), PIL-F, and C-RESS-F patterns were (133.9 ± 3.8°, 128.6 ± 5.3°), (156.1 ± 1.5°, 151.5 ± 2.1°), and (146.3 ± 3.5°, 150.7 ± 1.8°), respectively. The Escherichia coli adhesion on the C-RESS-F micro-pattern with hydrophobicity and superoleophobicity was 42.6%, 31.8%, and 2.9% less than FLT-F, PIL-F, and Teflon surfaces. Therefore, the flame-treated C-RESS-F pattern is one of the promising bacterial anti-adhesion micro-structures in practical utilization for various applications.

2.
Nanomaterials (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572813

RESUMO

Bio-inspired surfaces with superamphiphobic properties are well known as effective candidates for antifouling technology. However, the limitation of large-area mastering, patterning and pattern collapsing upon physical contact are the bottleneck for practical utilization in marine and medical applications. In this study, a roll-to-plate nanoimprint lithography (R2P NIL) process using Morphotonics' automated Portis NIL600 tool was used to replicate high aspect ratio (5.0) micro-structures via reusable intermediate flexible stamps that were fabricated from silicon master molds. Two types of Morphotonics' in-house UV-curable resins were used to replicate a micro-pillar (PIL) and circular rings with eight stripe supporters (C-RESS) micro-structure onto polycarbonate (PC) and polyethylene terephthalate (PET) foil substrates. The pattern quality and surface wettability was compared to a conventional polydimethylsiloxane (PDMS) soft lithography process. It was found that the heights of the R2P NIL replicated PIL and C-RESS patterns deviated less than 6% and 5% from the pattern design, respectively. Moreover, the surface wettability of the imprinted PIL and C-RESS patterns was found to be superhydro- and oleophobic and hydro- and oleophobic, respectively, with good robustness for the C-RESS micro-structure. Therefore, the R2P NIL process is expected to be a promising method to fabricate robust C-RESS micro-structures for large-scale anti-biofouling application.

3.
Talanta ; 207: 120305, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594628

RESUMO

The 3-aminopropyltriethoxysilane (APTES) is a common method for biomolecule immobilization on silicon and silicon derivatives such as silicon nitride (Si3N4). However, there are many parameters which impact the efficiency of APTES modification such as APTES concentration and reaction time. Thus, various APTES concentrations (0.1%, 0.5%, 1%, 2%, 5%, and 10%) under different reaction times (15, 30, 60 and 120 min) were compared to achieve the optimal APTES modification condition which produced a thin and stable APTES layer on Si3N4 surface. The modified surfaces were characterized by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy and spectroscopic ellipsometry to determine the wetting property, chemical bonding composition and surface thickness, respectively. In addition, biotin was used as a model to determine the effectiveness of APTES modification condition by coupling with glutaraldehyde (GA). The Alexa Flour 488 conjugated streptavidin was performed to visualize the presence of biotin using fluorescence microscopy due to the specifically binding between biotin and streptavidin. The atomic force microscopy (AFM) was utilized to determine the surface topology which was an indicator to demonstrate the agglomeration of APTES molecule. Moreover, ion sensitive field effect transistor (ISFET) was employed as a biosensor model to demonstrate the effect between surface thickness and sensitivity of biosensor. The results show that the APTES thickness is directly correlated to the APTES concentration and reaction time. Since the importance parameter for ISFET measurement is the distance between biomolecule and sensing membrane of ISFET, the thicker APTES layer negatively impacts the sensitivity of ISFET based biosensor because of the ion shielding effect. Therefore, these results would be valuable information for development of Si3N4 biosensor, especially ISFET based biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Propilaminas/química , Silanos/química , Compostos de Silício/química , Glutaral/química , Cinética , Propriedades de Superfície , Transistores Eletrônicos
4.
Analyst ; 141(20): 5767-5775, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27486595

RESUMO

A silicon nitride Ion Sensitive Field Effect Transistor (ISFET) based immunosensor was developed as a low-cost and label-free electrical detection for the detection of antigen 85 complex B (Ag85B). The sensing membrane of the ISFET was modified with 3-aminopropyltriethoxysilane (APTES) followed by glutaraldehyde (GA), yielding an aldehyde-terminated surface. This group is available for immobilization of a monoclonal antibody against a recombinant Ag85B protein (anti-Ag85B antibody). The optimal concentration for anti-Ag85B antibody immobilization onto the modified ISFET was 100 µg ml-1. This optimal condition provided the maximal binding capability and minimal non-specific background signal. The binding event between the recombinant Ag85B antigen and anti-Ag85B antibody on the ISFET surface is presented by monitoring the gate potential change at a constant drain current. The dose response for the recombinant Ag85B protein showed a linear response between 0.12 and 1 µg ml-1 without significant interference from other recombinant proteins. The analytical imprecision (CV%) and accuracy of this Ag85B protein biosensor were 9.73-10.99% and 95.29%, respectively. In addition, an irrelevant antibody and other recombinant proteins were employed as a negative control to demonstrate the non-specific interaction of the antigen and antibody. The success of this immunosensor system for Ag85B protein detection facilitates the construction of a promising device which can shorten the turnaround time for the diagnosis of tuberculosis compared to a standard culture method. Furthermore, this device could also be applied for real-time growth monitoring of Mycobacterium tuberculosis in a mycobacterial culture system.


Assuntos
Aciltransferases/análise , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Técnicas Biossensoriais , Compostos de Silício , Tuberculose/diagnóstico , Anticorpos Imobilizados , Anticorpos Monoclonais , Glutaral , Íons , Mycobacterium tuberculosis/crescimento & desenvolvimento , Propilaminas , Silanos
5.
Biosens Bioelectron ; 67: 134-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25108848

RESUMO

Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface.


Assuntos
Técnicas Biossensoriais/métodos , Glutaral/química , L-Lactato Desidrogenase/química , Ácido Láctico/química , Compostos de Silício/química , Dióxido de Silício/química , Adsorção , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Ácido Láctico/análise , Teste de Materiais , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...