Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114435, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985673

RESUMO

Cell membranes mediate interactions between life and its environment, with lipids determining their properties. Understanding how cells adjust their lipidomes to tune membrane properties is crucial yet poorly defined due to the complexity of most organisms. We used quantitative shotgun lipidomics to study temperature adaptation in the simple organism Mycoplasma mycoides and the minimal cell JCVI-syn3B. We show that lipid abundances follow a universal logarithmic distribution across eukaryotes and bacteria, with comparable degrees of lipid remodeling for adaptation regardless of lipidomic or organismal complexity. Lipid features analysis demonstrates head-group-specific acyl chain remodeling as characteristic of lipidome adaptation; its deficiency in Syn3B is associated with impaired homeoviscous adaptation. Temporal analysis reveals a two-stage cold adaptation process: swift cholesterol and cardiolipin shifts followed by gradual acyl chain modifications. This work provides an in-depth analysis of lipidome adaptation in minimal cells, laying a foundation to probe the design principles of living membranes.

2.
Biophys J ; 123(13): 1896-1902, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38850024

RESUMO

The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the ordering of hydrocarbon chains and the packing of lipids. Many eukaryotes synthesize sterols, which are uniquely capable of modulating the lipid order to decouple membrane stability from fluidity. Ancient sterol analogs known as hopanoids are found in many bacteria and proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. In this work, simulations, monolayer experiments, and cellular assays show that hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest that cholesterol's broader lipid-ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.


Assuntos
Fosfolipídeos , Esteróis , Esteróis/química , Esteróis/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Colesterol/química , Colesterol/metabolismo
3.
EMBO J ; 43(8): 1653-1685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491296

RESUMO

Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.


Assuntos
Bicamadas Lipídicas , Proteínas de Saccharomyces cerevisiae , Bicamadas Lipídicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Tecnologia , Metabolismo dos Lipídeos
4.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370701

RESUMO

The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the thermodynamic ordering of lipids. Most Eukaryotes employ sterols, which are uniquely capable of modulating lipid order to decouple membrane stability from fluidity. Ancient sterol analogues known as hopanoids are found in many bacteria and are proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. We reveal that both hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid's acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest cholesterol's broader lipid ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.

5.
Rep Pract Oncol Radiother ; 28(2): 189-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456708

RESUMO

Background: Radical hysterectomy with pelvic lymph node assessment is the standard of treatment in early cervical cancer. Adjuvant radiotherapy or chemoradiotherapy are offered to patients with risk factors for recurrence. The objective of this study was to compare the incidence of severe (> G3) early or late morbidity related to treatment in patients with cervical cancer undergoing radical surgery with/without adjuvant treatment in a Latin American center. Materials and methods: Retrospective cohort study of patients diagnosed with cervical cancer stage IA1 to IB1. Complications were evaluated according to Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. The cumulative incidence of severe morbidity was estimated. Risk ratios (RR) were calculated to determine the factors associated with morbidity. Results: 239 patients were included. 133 (55.6%) received only radical surgical management and 106 (44.4%) adjuvant treatment. The incidence of early morbidity was 18.8% [95% confidence interval (CI): 12.6% to 26.5%] in the group without adjuvant treatment versus 21.7% (95% CI: 14.3% to 30.8%) in the adjuvant treatment group (p = 0.58). Late morbidity was 3% (95% CI: 1% to 7.5%) and 8.5% (95% CI: 4% to 15.5%), respectively (p = 0.063). No statistically significant differences regarding grade ≥ 3 morbidity between the groups was found (2.3% vs. 5.7%, p = 0.289). Complications during surgery is the only factor associated with postoperative morbidity related to treatment (RR = 4.1) (95% CI: 3% to 5.7%). Conclusion: In our study, the addition of adjuvant treatment for early cervical cancer patients who underwent radical surgery did not increase the incidence of severe early or late morbidity.

6.
JACS Au ; 3(3): 929-942, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006758

RESUMO

The ability of Methylobacterium extorquens to grow on methanol as the sole carbon and energy source has been the object of intense research activity. Unquestionably, the bacterial cell envelope serves as a defensive barrier against such an environmental stressor, with a decisive role played by the membrane lipidome, which is crucial for stress resistance. However, the chemistry and the function of the main constituent of the M. extorquens outer membrane, the lipopolysaccharide (LPS), is still undefined. Here, we show that M. extorquens produces a rough-type LPS with an uncommon, non-phosphorylated, and extensively O-methylated core oligosaccharide, densely substituted with negatively charged residues in the inner region, including novel monosaccharide derivatives such as O-methylated Kdo/Ko units. Lipid A is composed of a non-phosphorylated trisaccharide backbone with a distinctive, low acylation pattern; indeed, the sugar skeleton was decorated with three acyl moieties and a secondary very long chain fatty acid, in turn substituted by a 3-O-acetyl-butyrate residue. Spectroscopic, conformational, and biophysical analyses on M. extorquens LPS highlighted how structural and tridimensional features impact the molecular organization of the outer membrane. Furthermore, these chemical features also impacted and improved membrane resistance in the presence of methanol, thus regulating membrane ordering and dynamics.

7.
Acta Biomater ; 162: 211-225, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931420

RESUMO

Extracellular matrix (ECM) provides various types of direct interactions with cells and a dynamic environment, which can be remodeled through different assembly/degradation mechanisms to adapt to different biological processes. Herein, through introducing polyphosphate-modified hyaluronic acid and bioactive glass (BG) nano-fibril into a self-assembled hydrogel system with peptide-polymer conjugate, we can realize many new ECM-like functions in a synthetic polymer network. The hydrogel network formation is mediated by coacervation, followed by a gradual transition of peptide structure from  α-helix to ß-sheet. The ECM-like hydrogels can be degraded through a number of orthogonal mechanisms, including treatments with protease, hyaluronidase, alkaline phosphatase, and calcium ion. As 2D coating, the ECM-like hydrogels can be used to modify the planar surface to promote the adhesion of mesenchymal stromal cells, or to coat the cell surface in a layer-by-layer fashion to shield the interaction with the substrate. As ECM-like hydrogels for 3D cell culture, the system is compatible with injection and cell encapsulation. Upon incorporating fragmented electrospun bioactive glass nano-fibril into the hydrogels, the synergetic effects of soft hydrogel and stiff reinforcement nanofibers on recapitulating ECM functions result in reduced cell circularity in 3D. Finally, by injecting the ECM-like hydrogels into mice, gradual degradations over a time period of one month and high biocompatibility have been shown in vivo. The contribution of complex network dynamics and hierarchical structures to cell-biomatrix interaction can be investigated multi-dimensionally, as many mechanisms are orthogonal to each other and can be regulated individually. STATEMENT OF SIGNIFICANCE: A list of native ECM features has attracted the most interest and attention in the research of synthetic biomaterials. In this research, we have described a simple ECM-like hydrogel system in which the complex and elegant functions of native ECM can be recapitulated in a chemically defined synthetic system. The ECM-like hydrogel systems were developed to avoid undesired features of biological substances (e.g., ethical concerns, batch-to-batch variation, immunogenicity, and potential risk of contamination), as well as gaining new functions to facilitate bioengineering applications (e.g., 3D cell culture, injection, and high stability). To this end, we have developed an ECM-like hydrogel system and provide evidence that this purely synthetic biomaterial is a promising candidate for cell bioengineering applications.


Assuntos
Matriz Extracelular , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Matriz Extracelular/química , Materiais Biocompatíveis/farmacologia , Bioengenharia , Peptídeos/química , Polímeros
8.
Biochim Biophys Acta Biomembr ; 1865(1): 184078, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279907

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene that codes for the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). Recent advances in CF treatment have included use of small-molecule drugs known as modulators, such as Lumacaftor (VX-809), but their detailed mechanism of action and interplay with the surrounding lipid membranes, including cholesterol, remain largely unknown. To examine these phenomena and guide future modulator development, we prepared a set of wild type (WT) and mutant helical hairpin constructs consisting of CFTR transmembrane (TM) segments 3 and 4 and the intervening extracellular loop (termed TM3/4 hairpins) that represent minimal membrane protein tertiary folding units. These hairpin variants, including CF-phenotypic loop mutants E217G and Q220R, and membrane-buried mutant V232D, were reconstituted into large unilamellar phosphatidylcholine (POPC) vesicles, and into corresponding vesicles containing 70 mol% POPC +30 mol% cholesterol, and studied by single-molecule FRET and circular dichroism experiments. We found that the presence of 30 mol% cholesterol induced an increase in helicity of all TM3/4 hairpins, suggesting an increase in bilayer cross-section and hence an increase in the depth of membrane insertion compared to pure POPC vesicles. Importantly, when we added the corrector VX-809, regardless of the presence or absence of cholesterol, all mutants displayed folding and helicity largely indistinguishable from the WT hairpin. Fluorescence spectroscopy measurements suggest that the corrector alters lipid packing and water accessibility. We propose a model whereby VX-809 shields the protein from the lipid environment in a mutant-independent manner such that the WT scaffold prevails. Such 'normalization' to WT conformation is consistent with the action of VX-809 as a protein-folding chaperone.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Benzodioxóis/farmacologia , Benzodioxóis/química , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Colesterol , Lipídeos
9.
Chembiochem ; 23(24): e202200423, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36354762

RESUMO

When water interacts with porous rocks, its wetting and surface tension properties create air bubbles in large number. To probe their relevance as a setting for the emergence of life, we microfluidically created foams that were stabilized with lipids. A persistent non-equilibrium setting was provided by a thermal gradient. The foam's large surface area triggers capillary flows and wet-dry reactions that accumulate, aggregate and oligomerize RNA, offering a compelling habitat for RNA-based early life as it offers both wet and dry conditions in direct neighborhood. Lipids were screened to stabilize the foams. The prebiotically more probable myristic acid stabilized foams over many hours. The capillary flow created by the evaporation at the water-air interface provided an attractive force for molecule localization and selection for molecule size. For example, self-binding oligonucleotide sequences accumulated and formed micrometer-sized aggregates which were shuttled between gas bubbles. The wet-dry cycles at the foam bubble interfaces triggered a non-enzymatic RNA oligomerization from 2',3'-cyclic CMP and GMP which despite the small dry reaction volume was superior to the corresponding dry reaction. The found characteristics make heated foams an interesting, localized setting for early molecular evolution.


Assuntos
Prebióticos , RNA , Propriedades de Superfície , Água/química , Lipídeos
10.
Carbohydr Polym ; 295: 119863, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989007

RESUMO

Methylobacterium extorquens is a facultative methylotrophic Gram-negative bacterium, often associated with plants, that exhibits a unique ability to grow in the presence of high methanol concentrations, which serves as a single carbon energy source. We found that M. extorquens strain PA1 secretes a mixture of different exopolysaccharides (EPSs) when grown in reference medium or in presence of methanol, that induces the secretion of a peculiar and heterogenous mixture of EPSs, with different structure, composition, repeating units, bulk and a variable degree of methylation. These factors influenced 3D structure and supramolecular assets, diffusion properties and hydrodynamic radius, and likely contribute to increase methanol tolerance and cell stability. No direct methanol involvement in the EPSs solvation shell was detected, indicating that the polymer exposure to methanol is water mediated. The presence of methanol induces no changes in size and shape of the polymer chains, highlighting how water-methanol mixtures are a good solvent for refEPS and metEPS.


Assuntos
Methylobacterium extorquens , Metanol , Polímeros , Estresse Fisiológico , Água
11.
J Bacteriol ; 204(7): e0044221, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35657706

RESUMO

Rhizobia are a group of bacteria that increase soil nitrogen content through symbiosis with legume plants. The soil and symbiotic host are potentially stressful environments, and the soil will likely become even more stressful as the climate changes. Many rhizobia within the Bradyrhizobium clade, like Bradyrhizobium diazoefficiens, possess the genetic capacity to synthesize hopanoids, steroid-like lipids similar in structure and function to cholesterol. Hopanoids are known to protect against stresses relevant to the niche of B. diazoefficiens. Paradoxically, mutants unable to synthesize the extended class of hopanoids participate in symbioses with success similar to that of the wild type, despite being delayed in root nodule initiation. Here, we show that in B. diazoefficiens, the growth defects of extended-hopanoid-deficient mutants can be at least partially compensated for by the physicochemical environment, specifically, by optimal osmotic and divalent cation concentrations. Through biophysical measurements of lipid packing and membrane permeability, we show that extended hopanoids confer robustness to environmental variability. These results help explain the discrepancy between previous in-culture and in planta results and indicate that hopanoids may provide a greater fitness advantage to rhizobia in the variable soil environment than the more controlled environments within root nodules. To improve the legume-rhizobium symbiosis through either bioengineering or strain selection, it will be important to consider the full life cycle of rhizobia, from soil to symbiosis. IMPORTANCE Rhizobia, such as B. diazoefficiens, play an important role in the nitrogen cycle by making nitrogen gas bioavailable through symbiosis with legume plants. As climate change threatens soil health, this symbiosis has received increased attention as a more sustainable source of soil nitrogen than the energy-intensive Haber-Bosch process. Efforts to use rhizobia as biofertilizers have been effective; however, long-term integration of rhizobia into the soil community has been less successful. This work represents a small step toward improving the legume-rhizobium symbiosis by identifying a cellular component-hopanoid lipids-that confers robustness to environmental stresses rhizobia are likely to encounter in soil microenvironments as sporadic desiccation and flooding events become more common.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Bradyrhizobium/genética , Fabaceae/microbiologia , Lipídeos , Nitrogênio , Fixação de Nitrogênio , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Solo , Simbiose
12.
Cell ; 185(2): 345-360.e28, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063075

RESUMO

We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.


Assuntos
Células/citologia , Simulação por Computador , Trifosfato de Adenosina/metabolismo , Ciclo Celular/genética , Proliferação de Células/genética , Células/metabolismo , Replicação do DNA/genética , Regulação da Expressão Gênica , Imageamento Tridimensional , Cinética , Lipídeos/química , Redes e Vias Metabólicas , Metaboloma , Anotação de Sequência Molecular , Nucleotídeos/metabolismo , Termodinâmica , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042820

RESUMO

RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization platforms, introducing a mechanism for riboregulation. The activity of R3C ribozyme can be modified by the presence of lipid membranes, with direct RNA-lipid interactions dependent on RNA nucleotide content, base pairing, and length. In particular, the presence of guanine in short RNAs is crucial for RNA-lipid interactions, and G-quadruplex formation further promotes lipid binding. Lastly, by artificially modifying the R3C substrate sequence to enhance membrane binding, we generated a lipid-sensitive ribozyme reaction with riboswitch-like behavior. These findings introduce RNA-lipid interactions as a tool for developing synthetic riboswitches and RNA-based lipid biosensors and bear significant implications for RNA world scenarios for the origin of life.


Assuntos
Lipídeos/fisiologia , Lipídeos de Membrana/metabolismo , RNA/metabolismo , Pareamento de Bases/genética , Sequência de Bases/genética , Sítios de Ligação/genética , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Engenharia Genética/métodos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos de Membrana/fisiologia , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/química , RNA Catalítico/metabolismo , Riboswitch/genética
14.
Mol Microbiol ; 116(4): 1064-1078, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387371

RESUMO

Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE and crtB we disrupted the production of squalene and phytoene in M. extorquens PA1, which are the presumed precursors for hopanoids and carotenoids respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.


Assuntos
Membrana Externa Bacteriana/metabolismo , Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Oxirredutases/genética , Esqualeno/metabolismo , Vias Biossintéticas , Técnicas de Silenciamento de Genes , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Estresse Oxidativo , Oxirredutases/metabolismo , Filogenia , Planctomicetos/genética , Deleção de Sequência , Esqualeno/análogos & derivados
15.
Environ Microbiol ; 23(6): 2906-2918, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33989442

RESUMO

Bacteria are a globally sustainable source of fixed nitrogen, which is essential for life and crucial for modern agriculture. Many nitrogen-fixing bacteria are agriculturally important, including bacteria known as rhizobia that participate in growth-promoting symbioses with legume plants throughout the world. To be effective symbionts, rhizobia must overcome multiple environmental challenges: from surviving in the soil, to transitioning to the plant environment, to maintaining high metabolic activity within root nodules. Climate change threatens to exacerbate these challenges, especially through fluctuations in soil water potential. Understanding how rhizobia cope with environmental stress is crucial for maintaining agricultural yields in the coming century. The bacterial outer membrane is the first line of defence against physical and chemical environmental stresses, and lipids play a crucial role in determining the robustness of the outer membrane. In particular, structural remodelling of lipid A and sterol-analogues known as hopanoids are instrumental in stress acclimation. Here, we discuss how the unique outer membrane lipid composition of rhizobia may underpin their resilience in the face of increasing osmotic stress expected due to climate change, illustrating the importance of studying microbial membranes and highlighting potential avenues towards more sustainable soil additives.


Assuntos
Fabaceae , Rhizobium , Mudança Climática , Fixação de Nitrogênio , Simbiose
16.
Int J Gynecol Cancer ; 31(4): 504-511, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33504547

RESUMO

INTRODUCTION: Recent evidence has shown adverse oncological outcomes when minimally invasive surgery is used in early-stage cervical cancer. The objective of this study was to compare disease-free survival in patients that had undergone radical hysterectomy and pelvic lymphadenectomy, either by laparoscopy or laparotomy. METHODS: We performed a multicenter, retrospective cohort study of patients with cervical cancer stage IA1 with lymph-vascular invasion, IA2, and IB1 (FIGO 2009 classification), between January 1, 2006 to December 31, 2017, at seven cancer centers from six countries. We included squamous, adenocarcinoma, and adenosquamous histologies. We used an inverse probability of treatment weighting based on propensity score to construct a weighted cohort of women, including predictor variables selected a priori with the possibility of confounding the relationship between the surgical approach and survival. We estimated the HR for all-cause mortality after radical hysterectomy with weighted Cox proportional hazard models. RESULTS: A total of 1379 patients were included in the final analysis, with 681 (49.4%) operated by laparoscopy and 698 (50.6%) by laparotomy. There were no differences regarding the surgical approach in the rates of positive vaginal margins, deep stromal invasion, and lymphovascular space invasion. Median follow-up was 52.1 months (range, 0.8-201.2) in the laparoscopic group and 52.6 months (range, 0.4-166.6) in the laparotomy group. Women who underwent laparoscopic radical hysterectomy had a lower rate of disease-free survival compared with the laparotomy group (4-year rate, 88.7% vs 93.0%; HR for recurrence or death from cervical cancer 1.64; 95% CI 1.09-2.46; P=0.02). In sensitivity analyzes, after adjustment for adjuvant treatment, radical hysterectomy by laparoscopy compared with laparotomy was associated with increased hazards of recurrence or death from cervical cancer (HR 1.7; 95% CI 1.13 to 2.57; P=0.01) and death for any cause (HR 2.14; 95% CI 1.05-4.37; P=0.03). CONCLUSION: In this retrospective multicenter study, laparoscopy was associated with worse disease-free survival, compared to laparotomy.


Assuntos
Histerectomia/métodos , Laparoscopia/métodos , Neoplasias do Colo do Útero/cirurgia , Adulto , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias do Colo do Útero/mortalidade , Adulto Jovem
17.
Cell Rep ; 32(12): 108165, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966790

RESUMO

Cells, from microbes to mammals, adapt their membrane lipid composition in response to environmental changes to maintain optimal properties. Global patterns of lipidome remodeling are poorly understood, particularly in organisms with simple lipid compositions that can provide insight into fundamental principles of membrane adaptation. Using shotgun lipidomics, we examine the simple yet, as we show here, adaptive lipidome of the plant-associated Gram-negative bacterium Methylobacterium extorquens. We observe that minimally 11 lipids account for 90% of total variability, thus constraining the upper limit of variable lipids required for an adaptive living membrane. Through lipid features analysis, we reveal that acyl chain remodeling is not evenly distributed across lipid classes, resulting in headgroup-specific effects of acyl chain variability on membrane properties. Results herein implicate headgroup-specific acyl chain remodeling as a mechanism for fine-tuning the membrane's physical state and provide a resource for using M. extorquens to explore the design principles of living membranes.


Assuntos
Adaptação Fisiológica , Bactérias/metabolismo , Membrana Celular/fisiologia , Lipidômica , Fosfolipídeos/química , Fosfolipídeos/metabolismo
18.
JCO Glob Oncol ; 6: 1376-1383, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32903119

RESUMO

PURPOSE: Locally advanced cervical cancer may present with uncontrollable vaginal bleeding in up to 70% of cases. Pelvic vessel embolization has been used as an urgent maneuver for achieving fast hemostatic control. This report describes outcomes of selective pelvic vessel embolization in patients with severe bleeding due to a locally advanced cervical cancer. METHODS: In this retrospective study, technical aspects, clinical variables, and bleeding-related morbidity were described. The frequency of recurrent disease and the vital status at 1 year of follow-up were determined. Analysis was performed with statistical software R, version 3.6.2. The setting was Instituto Nacional de Cancerología- Bogotá, Colombia, between January 2009 and July 2017. RESULTS: A total of 47 patients were included. Median age was 44 years (range, 26-70 years). The pre-embolization median hemoglobin level was 7.9 g/dL (range, 5.0-11.3 g/dL). Blood transfusions were administered to 41 women (87.2%). Bleeding control was achieved in 95.7% of cases in the first 24 hours after the embolization. There were no major complications. In 17 cases (36.2%), minor complications were reported; the most common was pelvic pain. In 17.1% of cases, a second embolization was required. After 12 months of follow-up, 27.7% of patients were alive without disease, 44.7% were alive with disease, and 25.5% of them have died of cervical cancer progression. CONCLUSION: Selective pelvic vessel embolization is a useful alternative in patients with locally advanced cervical cancer and life-threatening bleeding. Its impact on recurrent disease and death due to oncologic cause is not clear.


Assuntos
Neoplasias do Colo do Útero , Adulto , Colômbia , Feminino , Humanos , América Latina , Estudos Retrospectivos , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/terapia , Hemorragia Uterina/etiologia , Hemorragia Uterina/terapia
19.
Cureus ; 12(7): e9350, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32850222

RESUMO

Unclassified mixed germ cell-sex cord-stromal tumor (UMGC-SCST) is a rare ovarian neoplasm composed of germ cells and sex cord elements, which occurs in genetically and phenotypically normal women without the usual histological features seen in gonadoblastoma. Few cases have been reported in the literature so far. The age of presentation is more frequent in girls younger than 10 years of age, although it can also occur in adult women. It can be associated with isosexual pseudoprecocity. The preferred management is the resection of the gonad that contains the tumor and the conservation of the opposite ovary and tube. This is a case of a 14-year-old patient, with precocious puberty and normal phenotype, diagnosed with this kind of ovarian tumor. A fertility preserving surgery with the resection of the right ovarian tumor and tube was performed. The patient was classified as stage IA according to the 2014 International Federation of Gynecology and Obstetrics (FIGO). She received adjuvant chemotherapy with bleomycin-etoposide-cisplatin for three cycles. After a follow-up of 24 months, she was found to be asymptomatic and free of relapse.

20.
Chembiochem ; 21(6): 836-844, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31566864

RESUMO

To unravel the underlying principles of membrane adaptation in small systems like bacterial cells, robust approaches to characterize membrane fluidity are needed. Currently available relevant methods require advanced instrumentation and are not suitable for high-throughput settings needed to elucidate the biochemical pathways involved in adaptation. We developed a fast, robust, and financially accessible quantitative method to measure the microviscosity of lipid membranes in bulk suspension using a commercially available plate reader. Our approach, which is suitable for high-throughput screening, is based on the simultaneous measurements of absorbance and fluorescence emission of a viscosity-sensitive fluorescent dye, 9-(2,2-dicyanovinyl)julolidine (DCVJ), incorporated into a lipid membrane. We validated our method using artificial membranes with various lipid compositions over a range of temperatures and observed values that were in good agreement with previously published results. Using our approach, we were able to detect a lipid phase transition in the ruminant pathogen Mycoplasma mycoides.


Assuntos
Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Lipídeos de Membrana/química , Mycoplasma mycoides/química , Tamanho da Partícula , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...