Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Res Protoc ; 13: e50325, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393761

RESUMO

BACKGROUND: Frailty resulting from the loss of muscle quality can potentially be delayed through early detection and physical exercise interventions. There is a demand for cost-effective tools for the objective evaluation of muscle quality, in both cross-sectional and longitudinal assessments. Literature suggests that quantitative analysis of ultrasound data captures morphometric, compositional, and microstructural muscle properties, while biological assays derived from blood samples are associated with functional information. OBJECTIVE: This study aims to assess multiparametric combinations of ultrasound and blood-based biomarkers to offer a cross-sectional evaluation of the patient frailty phenotype and to track changes in muscle quality associated with supervised exercise programs. METHODS: This prospective observational multicenter study will include patients aged 70 years and older who are capable of providing informed consent. We aim to recruit 100 patients from hospital environments and 100 from primary care facilities. Each patient will undergo at least two examinations (baseline and follow-up), totaling a minimum of 400 examinations. In hospital environments, 50 patients will be measured before/after a 16-week individualized and supervised exercise program, while another 50 patients will be followed up after the same period without intervention. Primary care patients will undergo a 1-year follow-up evaluation. The primary objective is to compare cross-sectional evaluations of physical performance, functional capacity, body composition, and derived scales of sarcopenia and frailty with biomarker combinations obtained from muscle ultrasound and blood-based assays. We will analyze ultrasound raw data obtained with a point-of-care device, along with a set of biomarkers previously associated with frailty, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Additionally, we will examine the sensitivity of these biomarkers to detect short-term muscle quality changes and functional improvement after a supervised exercise intervention compared with usual care. RESULTS: At the time of manuscript submission, the enrollment of volunteers is ongoing. Recruitment started on March 1, 2022, and ends on June 30, 2024. CONCLUSIONS: The outlined study protocol will integrate portable technologies, using quantitative muscle ultrasound and blood biomarkers, to facilitate an objective cross-sectional assessment of muscle quality in both hospital and primary care settings. The primary objective is to generate data that can be used to explore associations between biomarker combinations and the cross-sectional clinical assessment of frailty and sarcopenia. Additionally, the study aims to investigate musculoskeletal changes following multicomponent physical exercise programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT05294757; https://clinicaltrials.gov/ct2/show/NCT05294757. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50325.

2.
Heliyon ; 6(4): e03706, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300668

RESUMO

The industrial applications in the cloud do not meet the requirements of low latency and reliability since variables must be continuously monitored. For this reason, industrial internet of things (IIoT) is a challenge for the current infrastructure because it generates a large amount of data making cloud computing reach the edge and become fog computing (FC). FC can be considered as a new component of Industry 4.0, which aims to solve the problem of big data, reduce energy consumption in industrial sensor networks, improve the security, processing and storage real-time data. It is a promising growing paradigm that offers new opportunities and challenges, beside the ones inherited from cloud computing, which requires a new heterogeneous architecture to improve the network capacity for delivering edge services, that is, providing computing resources closer to the end user. The purpose of this research is to show a systematic review of the most recent studies about the architecture, security, latency, and energy consumption that FC presents at industrial level and thus provide an overview of the current characteristics and challenges of this new technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...