Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2228, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472188

RESUMO

Methanol-to-hydrocarbons (MTH) process has been considered one of the most practical approaches for producing value-added products from methanol. However, the commonly used zeolite catalysts suffer from rapid deactivation due to coke deposition and require regular regeneration treatments. We demonstrate that low-melting-point metals, such as Ga, can effectively promote more stable methanol conversion in the MTH process by slowing coke deposition and facilitating the desorption of carbonaceous species from the zeolite. The ZSM-5 zeolite physically mixed with liquid gallium exhibited an enhanced lifetime in the MTH reaction, which increased by a factor of up to ~14 as compared to the parent ZSM-5. These results suggest an alternative route to the design and preparation of deactivation-resistant zeolite catalysts.

2.
Chem Rev ; 123(9): 5798-5858, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897768

RESUMO

For nearly a century, the Fischer-Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-modeling-based bottom-up approach has brought this molecular picture a step closer. Theoretical models provided a structural picture of the Co catalyst particles. Recent surface science experiments and density functional theory (DFT) calculations highlighted the importance of realistic surface coverages, which can induce surface reconstruction and impact the stability of reaction intermediates. For Co-based FTS, detailed microkinetic simulations and mechanistic experiments are moving toward a consensus about the active sites and the reaction mechanism. The dynamic phase evolution of Fe-based catalysts under the reaction conditions complicates identification of the surface structure and the active sites. New techniques can help tackle the combinatorial complexity in these systems. Experimental and DFT studies have addressed the mechanism for Fe-based catalysts; the absence of a clear molecular picture of the active sites, however, limits the development of a molecular view of the mechanism. Finally, direct CO2 hydrogenation to long-chain hydrocarbons could present a sustainable pathway for FT synthesis.

3.
ChemSusChem ; 10(6): 1039-1055, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-27925436

RESUMO

Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy supply of mankind with the current technological knowledge, but a transition to a mixed carbon-hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2 -neutral world.


Assuntos
Dióxido de Carbono/química , Atmosfera/química , Economia , Combustíveis Fósseis , Hidrogênio/química , Fatores de Tempo
4.
ACS Nano ; 10(9): 8499-507, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27504525

RESUMO

One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

5.
Phys Chem Chem Phys ; 18(25): 16757-65, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27271337

RESUMO

Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.

6.
J Phys Chem Lett ; 7(11): 1996-2001, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27176712

RESUMO

Cobalt-based catalysts undergo a massive and spontaneous reconstruction to form uniform triangular nanoislands under Fischer-Tropsch (FT) conditions. This reconstruction is driven by the unusual and synergistic adsorption of square-planar carbon and CO at the 4-fold edge sites of the nanoislands, driving the formation of triangular islands. The size of the nanoislands is determined by the balance between energy gain from creating C/CO-covered edges and energy penalty to create C/CO-covered corners. For carbon chemical potentials corresponding to FT conditions, triangular Co islands with 45 Co atoms (about 2 nm) are the most stable surface structure. Decreasing the carbon chemical potential and hence the stability of square-planar carbon favors the formation of larger islands, until reconstruction becomes unfavorable and CO-covered terraces are thermodynamically the most stable. The predicted structure of the islands is consistent with in situ scanning tunneling microscopy images obtained for the first time under realistic FT reaction conditions on a Co(0001) surface.


Assuntos
Cobalto/química , Nanopartículas Metálicas/química , Adsorção , Carbono/química , Monóxido de Carbono/química , Catálise , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
7.
Adv Mater ; 28(25): 4983-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27119207

RESUMO

Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components.

8.
Phys Chem Chem Phys ; 18(5): 3854-61, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26766161

RESUMO

Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

9.
Angew Chem Int Ed Engl ; 54(18): 5312-6, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25809134

RESUMO

Surface carbides of cobalt and nickel are exceptionally stable, having stabilities competitive with those of graphitic C on these surfaces. The unusual structure of these carbides has attracted much attention: C assumes a tetracoordinate square-planar arrangement, in-plane with the metal surface, and its binding favors a spontaneous p4g clock surface reconstruction. A chemical bonding model for these systems is presented and explains the unusual structure, special stability, and the reconstruction. C promotes local two-dimensional aromaticity on the surface and the aromatic arrangement is so powerful that the required number of electrons is taken from the void M4 squares, thus leading to Peierls instability. Moreover, this model predicts a series of new transition-metal and main-group-element surface alloys: carbides, borides, and nitrides, which feature high stability, square-planar coordination, aromaticity, and a predictable degree of surface reconstruction.

10.
Sci Rep ; 4: 6505, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266219

RESUMO

While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.

11.
Chemistry ; 20(39): 12584-94, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25112971

RESUMO

A constrained binuclear palladium catalyst system affords selective thioetherification of a wide range of functionalized arenethiols with chloroheteroaromatic partners with the highest turnover numbers (TONs) reported to date and tolerates a large variety of reactive functions. The scope of this system includes the coupling of thiophenols with six- and five-membered 2-chloroheteroarenes (i.e., functionalized pyridine, pyrazine, quinoline, pyrimidine, furane, and thiazole) and 3-bromoheteroarenes (i.e., pyridine and furane). Electron-rich congested thiophenols and fluorinated thiophenols are also suitable partners. The coupling of unprotected amino-2-chloropyridines with thiophenol and the successful employment of synthetically valuable chlorothiophenols are described with the same catalyst system. DFT studies attribute the high performance of this binuclear palladium catalyst to the decreased stability of thiolate-containing resting states. Palladium loading was as low as 0.2 mol %, which is important for industrial application and is a step forward in solving catalyst activation/deactivation problems.


Assuntos
Fenóis/química , Compostos de Sulfidrila/química , Sulfetos/química , Catálise , Furanos/química , Halogenação , Ligantes , Modelos Moleculares , Paládio/química , Fosfinas/química , Pirazinas/química , Piridinas/química , Quinolinas/química , Tiazóis/química
12.
ACS Nano ; 7(11): 10105-11, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24148187

RESUMO

Fabrication of single-molecule logic devices requires controlled manipulation of molecular states with atomic-scale precision. Tuning molecule-substrate coupling is achieved here by the reversible attachment of a prototypical planar conjugated organic molecule to dangling bonds on the surface of a hydrogenated semiconductor. We show that the ground electronic state resonance of a Y-shaped polyaromatic molecule physisorbed on a defect-free area of a fully hydrogenated surface cannot be observed by scanning tunneling microscopy (STM) measurements because it is decoupled from the Ge bulk states by the hydrogen-passivated surface. The state can be accessed by STM only if the molecule is contacted with the substrate by a dangling bond dimer. The reversibility of the attachment processes will be advantageous in the construction of surface atomic-scale circuits composed of single-molecule devices interconnected by the surface dangling bond wires.

13.
J Phys Condens Matter ; 24(9): 095011, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22329961

RESUMO

Atomic-scale Boolean logic gates (LGs) with two inputs and one output (i.e. OR, NOR, AND, NAND) were designed on a Si(100)-(2 × 1)-H surface and connected to the macroscopic scale by metallic nano-pads physisorbed on the Si(100)-(2 × 1)-H surface. The logic inputs are provided by saturating and unsaturating two surface Si dangling bonds, which can, for example, be achieved by adding and extracting two hydrogen atoms per input. Quantum circuit design rules together with semi-empirical elastic-scattering quantum chemistry transport calculations were used to determine the output current intensity of the proposed switches and LGs when they are interconnected to the metallic nano-pads by surface atomic-scale wires. Our calculations demonstrate that the proposed devices can reach ON/OFF ratios of up to 2000 for a running current in the 10 µA range.


Assuntos
Hidrogênio/química , Lógica , Silício/química , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
14.
Phys Rev Lett ; 106(16): 167201, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599406

RESUMO

The influence of the insertion of an ultrathin NiO layer between the MgO barrier and the ferromagnetic electrodes in magnetic tunnel junctions has been investigated from measurements of the tunneling magnetoresistance and via x-ray magnetic circular dichroism (XMCD). The magnetoresistance shows a high asymmetry with respect to bias voltage, giving rise to a negative value of up to -16% at 2.8 K. We attribute this effect to the formation of noncollinear spin structures at the interface of the NiO layer as inferred from XMCD measurements. The magnetic moments of the interface Ni atoms tilt from their easy axis due to exchange coupling with the neighboring ferromagnetic electrode, and the tilting angle decreases with increasing NiO thickness. The experimental observations are further supported by noncollinear spin density functional calculations.

15.
J Phys Chem A ; 113(27): 7852-60, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19569719

RESUMO

Hydrogen abstraction from organic acids by hydroxyl radicals is the initial rate- and selectivity-determining step in the photochemical oxidation of organic acids in the troposphere. To quantify the rate and selectivity of these reactions, the abstraction of hydrogen atoms at the acid, alpha, beta, gamma, and methyl positions was studied for valeric acid, C(4)H(9)COOH, using first principles calculations. At the high-pressure limit, an overall rate coefficient at 298 K of 4.3 x 10(6) m(3)/(mol s) was calculated. The dominant pathways are abstraction at the beta; the gamma; and, to a lesser extent, the acid positions; with a selectivity of 55, 28, and 8%, respectively. This differs from the high selectivity for the acid channel for formic and acetic acids and from the thermodynamic preference for abstraction at the alpha position, but it is consistent with the experimentally observed preference for the beta and the gamma positions in larger organic acids. The rate and selectivity are controlled by the strength of hydrogen bonds between the acid group and the hydroxyl radical in the different transition states and do not correlate with the stability of the products. Natural bond orbital analysis was used to quantify the nature and strength of the hydrogen bonds. At 298 K and below 0.1 atm, the collision frequency is insufficient to stabilize the prereactive complexes, and the reaction becomes chemically activated. However, the reaction rate and the selectivity are largely unaffected by this mechanistic change.

16.
Macromol Rapid Commun ; 30(18): 1533-7, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-21638416

RESUMO

A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye-sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye-sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications.

17.
J Phys Chem A ; 112(30): 6918-28, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18610990

RESUMO

The oxidation of formic and acetic acids with hydroxyl radicals was studied as a model for the oxidation of larger carboxylic acids using first principles calculations. For formic acid, the CBS-QB3 activation barriers of 14.1 and 12.4 kJ/mol for the acid and for the formyl channel, respectively, are within 3 kJ/mol of benchmark W1U values. Tunneling significantly enhances the rate coefficient for the acid channel and is responsible for the dominance of the acid channel at 298 K. At 298 K, tunneling correction factors of 339 and 2.0 were calculated for the acid and the formyl channel using the small-curvature tunneling method and the CBS-QB3 potential energy surface. The Wigner, Eckart, and zero-curvature tunneling methods severely underestimate the importance of tunneling for the acid channel. The resulting reaction rate coefficient of 0.98 x 10(5) m(3)/(mol x s) at 298 K is within a factor 2-3 of experimental values. For acetic acid, an activation barrier of 11.0 kJ/mol and a tunneling correction factor of 199 were calculated for the acid channel. Two mechanisms compete for hydrogen abstraction at the methyl group, with activation barriers of 11.9 and 12.5 kJ/mol and tunneling correction factors of 9.1 and 4.1 at 298 K. The resulting rate coefficient of 1.2 x 10(5) m(3)/(mol x s) at 298 K and branching ratio of 94% compare well with experimental data.

18.
Chemphyschem ; 7(1): 188-99, 2006 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-16323223

RESUMO

The group contribution method for activation energies is applied to hydrogen abstraction reactions. To this end an ab initio database was constructed, which consisted of activation energies calculated with the ab initio CBS-QB3 method for a limited set of well-chosen homologous reactions. CBS-QB3 is shown to predict reaction rate coefficients within a factor of 2-4 and Arrhenius activation energies within 3-5 kJ mol(-1) of experimental data. Activation energies in the set of homologous reactions vary over 156 kJ mol(-1) with the structure of the abstracting radical and over 94 kJ mol(-1) with the structure of the abstracted hydrocarbon. The parameters required for the group contribution method, the so-called standard activation group additivity values, were determined from this database. To test the accuracy of the group contribution method, a large set of 88 additional activation energies were calculated from first principles and compared with the predictions from the group contribution method. It was found that the group contribution method yields accurate activation energies for hydrogen-transfer reactions between hydrogen molecules, alkylic hydrocarbons, and vinylic hydrocarbons, with the largest deviations being less than 6 kJ mol(-1). For reactions between allylic and propargylic hydrocarbons, the transition state is believed to be stabilized by resonance effects, thus requiring the introduction of an appropriate correction term to obtain a reliable prediction of the activation energy for this subclass of hydrogen abstraction reactions.

19.
J Phys Chem A ; 109(33): 7466-80, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16834116

RESUMO

A complete and consistent set of 95 Benson group additive values (GAV) for the standard enthalpy of formation of hydrocarbons and hydrocarbon radicals at 298 K and 1 bar is derived from an extensive and accurate database of 233 ab initio standard enthalpies of formation, calculated at the CBS-QB3 level of theory. The accuracy of the database was further improved by adding newly determined bond additive corrections (BAC) to the CBS-QB3 enthalpies. The mean absolute deviation (MAD) for a training set of 51 hydrocarbons is better than 2 kJ mol(-1). GAVs for 16 hydrocarbon groups, i.e., C(C(d))(3)(C), C-(C(d))(4), C-(C(t))(C(d))(C)(2), C-(C(t))(C(d))(2)(C), C-(C(t))(C(d))(3), C-(C(t))(2)(C)(2), C-(C(t))(2)(C(d))(C), C-(C(t))(2)(C(d))(2), C-(C(t))(3)(C), C-(C(t))(3)(C(d)), C-(C(t))(4), C-(C(b))(C(d))(C)(H), C-(C(b))(C(t))(H)(2), C-(C(b))(C(t))(C)(H), C-(C(b))(C(t))(C)(2), C(d)-(C(b))(C(t)), for 25 hydrocarbon radical groups, and several ring strain corrections (RSC) are determined for the first time. The new parameters significantly extend the applicability of Benson's group additivity method. The extensive database allowed an evaluation of previously proposed methods to account for non-next-nearest neighbor interactions (NNI). Here, a novel consistent scheme is proposed to account for NNIs in radicals. In addition, hydrogen bond increments (HBI) are determined for the calculation of radical standard enthalpies of formation. In particular for resonance stabilized radicals, the HBI method provides an improvement over Benson's group additivity method.

20.
J Phys Chem B ; 109(6): 2064-73, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851197

RESUMO

First-principles density functional theory calculations were performed to obtain detailed insight into the mechanism of benzene hydrogenation over Pt(111). The results indicate that benzene hydrogenation follows a Horiuti-Polanyi scheme which involves the consecutive addition of hydrogen adatoms. A first-principles-based reaction path analysis indicates the presence of a dominant reaction path. Hydrogenation occurs preferentially in the meta position of a methylene group. Cyclohexadiene and cyclohexene are expected to be at best minor products, since they are not formed along the dominant reaction path. The only product that can desorb is cyclohexane. Along the dominant reaction path, two categories of activation energies are found: lower barriers at approximately 75 kJ/mol for the first three hydrogenation steps, and higher barriers of approximately 88 kJ/mol for steps four and six, where hydrogen can only add in the ortho position of two methylene groups. The highest barrier at 104 kJ/mol is calculated for the fifth hydrogenation step, which may potentially be the rate-determining step. The high barrier for this step is likely the result of a rather strong C-H...Pt interaction in the adsorbed reactant state (1,2,3,5-tetrahydrobenzene) which increases the barrier by approximately 15 kJ/mol. Benzene and hydrogen are thought to be the most-abundant reaction intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...