Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Commun Signal ; 22(1): 105, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331801

RESUMO

The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.


Assuntos
Neoplasias Hematológicas , Leucemia , Linfoma , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Apoptose
2.
Transfus Apher Sci ; 62(5): 103766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550093

RESUMO

BACKGROUND: Genetic variations influence the Von Willebrand Factor plasma level and function. This study aims to evaluate the frequency and clinical phenotype effects of eight single nucleotide polymorphism candidates in four genes (VWF, STXBP5, CLEC4M, and ABO) in Iranian patients with VWD type 1. METHOD: The study recruited 50 patients with VWD type 1 and 100 healthy individuals. The demographic data from all participants were collected, and the High-Resolution Melting technique was used to determine the frequency of specific single nucleotide polymorphisms. Bleeding scores were also obtained from all patients to assess how these genetic variations might affect the severity of their bleeding symptoms. RESULTS: The study found notable variations in the occurrence of certain SNPs (rs7853989 and rs8176743 for ABO gene and rs1063856 and rs1063857 for VWF gene) between the control group and the patients. Additionally, the study discovered that two SNPs (rs868875 for CLEC4M gene and rs9390459 for STXBP5 gene) were significantly linked to the severity of bleeding, and two others (rs868875 for CLEC4M gene and rs8176746 for ABO gene) were associated with reduced levels of VWF antigen in the patients. CONCLUSION: According to this study, the above-selected SNPs can cause variations in VWF plasma levels in patients with VWD type 1. Furthermore, the effects of SNPs on bleeding phenotype prove the role of these SNPs in the severity of bleeding manifestations in patients.


Assuntos
Doença de von Willebrand Tipo 1 , Fator de von Willebrand , Humanos , Hemorragia , Irã (Geográfico) , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Doença de von Willebrand Tipo 1/diagnóstico , Doença de von Willebrand Tipo 1/genética , Fator de von Willebrand/análise , Fator de von Willebrand/genética
3.
J Biochem Mol Toxicol ; 37(11): e23459, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431890

RESUMO

Diabetic neuropathy (DN) is the most prevalent complication of diabetes. Pharmacological treatments for DN are often limited in efficacy, so the development of new agents to alleviate DN is essential. The aim of this study was to evaluate the effects of rolipram, a selective phosphodiesterase-4 inhibitor (PDE-4I), and pentoxifylline, a general PDE inhibitor, using a rat model of DN. In this study, a diabetic rat model was established by i.p. injection of STZ (55 mg/kg). Rats were treated with rolipram (1 mg/kg), pentoxifylline (100 mg/kg), and combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for 5 weeks. After treatments, sensory function was assessed by hot plate test. Then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP, adenosine diphosphate and mitochondrial membrane potential (MMP) levels, Cytochrome c release, Bax, Bcl-2, caspase-3 proteins expression in DRG neurons were assessed by biochemical and ELISA methods, and western blot analysis. DRG neurons were histologically examined using hematoxylin and eosin (H&E) staining method. Rolipram and/or pentoxifylline significantly attenuated sensory dysfunction by modulating nociceptive threshold. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, prevented mitochondrial dysfunction, apoptosis and degeneration of DRG neurons, which appears to be mediated by inducing ATP and MMP, improving cytochrome c release, as well as regulating the expression of Bax, Bcl-2, and caspase-3 proteins, and improving morphological abnormalities of DRG neurons. We found maximum effectiveness with rolipram and pentoxifylline combination on mentioned factors. These findings encourage the use of rolipram and pentoxifylline combination as a novel experimental evidence for further clinical investigations in the treatment of DN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Pentoxifilina , Ratos , Animais , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Rolipram/farmacologia , Rolipram/metabolismo , Rolipram/uso terapêutico , Neuropatias Diabéticas/metabolismo , Caspase 3/metabolismo , Citocromos c/metabolismo , Gânglios Espinais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/uso terapêutico , Apoptose , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias , Diabetes Mellitus/metabolismo
4.
Clin Lab ; 69(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307116

RESUMO

BACKGROUND: Rheumatic disorders are chronic and common diseases, which especially involve connective tissue and may be associated with the damage to vital organs such as heart and kidney. Diagnosis, prognosis, determining the probability of severe complications, monitoring and evaluation of the response to treatment in such patients require specialized, expensive and time-consuming laboratory tests. METHODS: In this review article, we assessed the value of parameters of routine, inexpensive, and available Complete Blood Count (CBC) in detecting disease activity and explaining the prognosis of a number of rheumatic disorders, including systemic lupus erythematosus and rheumatoid arthritis by reviewing the results of searching Google Scholar search engine and PubMed databases over 2000 - 2021. RESULTS: Review of previous articles showed that while traditional Erythrocyte Sedimentation Rate (ESR) and C-Reactive Protein (CRP) tests do not have sufficient specificity to appraise disease activity, CBC derived inflammatory biomarker Neutrophil-to-Lymphocyte Ratio (NLR) is able to assess disease activity and response to treatment in Rheumatoid Arthritis (RA). Also, Mean Platelet Volume (MPV) and NLR can determine the prognosis of renal involvement in Systemic lupus erythematosus (SLE). CONCLUSIONS: Although CBC-based parameters are not completely specific and sensitive to rheumatic disorders, but based on the results of previous studies, these parameters, particularly red cell distribution width (RDW), MPV, NLR and platelet to lymphocyte ratio (PLR) are inflammatory biomarkers with a prognostic role in rheumatic disorders that can also assess activity of the disease.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Doenças Reumáticas , Reumatologia , Humanos , Contagem de Células Sanguíneas
5.
Biomark Res ; 11(1): 60, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280670

RESUMO

Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.

6.
Mol Biol Rep ; 50(7): 6097-6105, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300744

RESUMO

BACKGROUND: FLT3-ITD mutations occur in 45-50% of cytogenetically normal AML patients. Conventional fragment analysis using capillary electrophoresis is routinely used to quantitate FLT3-ITD mutations. Fragment analysis however has limited sensitivity. METHODS AND RESULTS: Here, FLT3-ITD was quantified in AML patients using an in-house developed ultra-sensitive droplet digital polymerase chain reaction assay (ddPCR). The allelic ratio of FLT3-ITD was also absolutely measured by both Fragment analysis and ddPCR. The sensitivity of ddPCR in quantitation of FLT3-ITD mutation was superior to Fragment analysis. CONCLUSION: This study demonstrates the feasibility of using the described in-house ddPCR method to quantify the FLT3-ITD mutation and measure FLT3-ITD AR in AML patients.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Mutação/genética , Leucemia Mieloide Aguda/genética , Reação em Cadeia da Polimerase , Tirosina Quinase 3 Semelhante a fms/genética
7.
Biotechnol Rep (Amst) ; 38: e00792, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36950261

RESUMO

Background: HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results: We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 µm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2µL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion: The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.

8.
Cancer Gene Ther ; 30(7): 936-954, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36854897

RESUMO

Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Humanos , Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Transferência de Genes , Neoplasias/genética , Neoplasias/terapia , Vesículas Extracelulares/genética , Mamíferos/genética
9.
Cell J ; 25(2): 92-101, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840455

RESUMO

OBJECTIVE: Natural killer (NK) cells are critical immune cells for acute myeloid leukemia (AML) targeting. However, little is known about the relationship between using checkpoint inhibitors and heat shock protein 70 (Hsp70) as NK cell activators to control AML. Therefore, the study aims to find the best formulation of Hsp70, human PD-1 (Programmed cell death protein 1) blocker, and interleukin 15 (IL-15) to activate NK cells against AML. MATERIALS AND METHODS: In this experimental study, the NK cells were isolated from mononuclear cells (MNCs) by using magnetic activation cell sorting (MACS) and were activated using the different combinations of Hsp70, PD-1 blocker, and IL-15 and then followed by immunophenotyping, functional assays to estimate their killing potential, and evaluation of expression pattern of PRF1, PIK3CB, PD-1, AKT-1, FAS-L, TRAIL, and GER A and B. RESULTS: The expression of PD-1 was significantly (P<0.05) reduced after NK cell activation by the different formulas of IL-15, Hsp70, and PD-1 blocker. The expression of NKG2A in the treated NK cells was reduced particularly in the IL-15 (P<0.01) and IL-15+PD-1 blocker (P<0.05) groups. The addition of Hsp70 increased its expression. The cytotoxic effect of NK cells increased in all groups, especially in IL-15+PD-1 blocker besides increasing interferon-gamma (IFN-γ), Granzymes, and perforin expression (P<0.05). All IL-15+PD-1 blocker group changes were associated with the upregulation of PIK3CB and AKT-1 as key factors of NK cell activation. The presence of Hsp70 reduced IFN-γ releasing, and down-regulation of PIK3CB, AKT-1, Granzymes, and Perforin (P<0.05). CONCLUSION: We suggested the combination of IL-15 and PD-1 blocker could enhance the killing potential of AMLNK cells. Moreover, Hsp70 in combination with IL-15 and PD-1 blocker interferes activation of AML-NK cells through unknown mechanisms.

10.
Cell Tissue Bank ; 24(3): 651-661, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36534202

RESUMO

Immunitary bioeconomy encompasses a significant share of the bioeconomy that is accompanied by a high degree of complexity and various religious and ethical controversies for both customers and the service providers. Compared to blood banking, these complexities are more substantial for the new state-of-the-art technology of umbilical cord blood (UCB) banking, in which the viable therapeutically active substance of cord blood (i.e., cord blood stem cells (CBSCs)) is banked for much less likely future demand. It became even more complicated when we knew that the main three types of cord blood banking industry (i.e., private, public, or hybrid models) are not the same regarding economic, ethical, and even social considerations. The present paper aims to review and discuss the main drivers of behavioral intention among the customers of private UCB banking. We focused on private UCB banking because, although there is a low likelihood of childs' future need for their siblings' CBSCs, there is an unnecessary growing demand for using private UCB banking services. Based on the previously published pieces of research, we discussed five main influential factors (i.e., awareness, reference group, usability, disease history, and price) that can affect the customers' risk perception (and further their behavioral intention) to preserve their child UCB for private applications. Finally, we concluded that private UCB banking must not be considered a commercial activity, and ethically healthcare managers must be more actively involved in facilitating the proper flow of information among the customers.


Assuntos
Armazenamento de Sangue , Intenção , Criança , Humanos , Bancos de Sangue , Sangue Fetal , Cordão Umbilical
11.
Mol Biol Rep ; 50(3): 2293-2304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575321

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are utilized as a carrier of anti-tumor agents in targeted anti-cancer therapy. Despite the improvements in this area, there are still some unsolved issues in determining the appropriate dose, method of administration and biodistribution of MSCs. The current study aimed to determine the influence of toll-like receptor 3 (TLR3) stimulation on the potential of MSCs migration to the neoplasm environment in the mouse melanoma model. METHODS AND RESULTS: Adipose-derived MSCs (ADMSCs) were isolated from the GFP+ transgenic C57BL/6 mouse and treated with different doses (1 µg/ml and 10 µg/ml) of polyinosinic-polycytidylic acid, the related TLR3 agonist, at various time points (1 and 4 h). Following the treatment, the expression of targeted genes such as α4, α5, and ß1 integrins and TGF-ß and IL-10 anti-inflammatory cytokines was determined using real-time PCR. In vivo live imaging evaluated the migration index of the intraperitoneally (IP) injected treated ADMSCs in a lung tumor-bearing mouse (C57BL/6) melanoma model (n = 5). The presented findings demonstrated that TLR3 stimulation enhanced both migration of ADMSCs to the tumor area compared with control group (n = 5) and expression of α4, α5, and ß1 integrins. It was also detected that the engagement of TLR3 resulted in the anti-inflammatory behavior of the cells, which might influence the directed movement of ADMSCs. CONCLUSION: This research identified that TLR3 activation might improve the migration via the stimulation of stress response in the cells and depending on the agonist concentration and time exposure, this activated pathway drives the migratory behavior of MSCs.


Assuntos
Melanoma , Células-Tronco Mesenquimais , Camundongos , Animais , Receptor 3 Toll-Like/metabolismo , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Melanoma/metabolismo , Integrinas/metabolismo
12.
Bioimpacts ; 12(5): 415-429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381630

RESUMO

Introduction: Malignant breast cancer (BC) frequently contains a rare population of cells called cancer stem cells which underlie tumor relapse and metastasis, and targeting these cells may improve treatment options and outcomes for patients with BC. The aim of the present study was to determine the effect of silibinin on the self-renewal capacity, tumorgenicity, and metastatic potential of mammospheres. Methods: The effect of silibinin on viability and proliferation of MCF-7, MDA-MB-231 mammospheres, and MDA-MB-468 cell aggregation was determined after 72-120 hours of treatment. Colony and sphere formation ability, and the expression of stemness, differentiation, and epithelial-mesenchymal-transition (EMT)-associated genes were assessed by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in mammospheres treated with an IC50 dose of silibinin. Additionally, the antitumor capacity of silibinin was assessed in vivo, in mice. Results: The results of the present study showed that silibinin decreased the viability of all mammospheres derived from MCF-7, MDA-MB-231, and MDA-MB-468 cell aggregation in a dose-dependent manner. Colony and sphere-forming ability, as well as the expression of genes associated with EMT were reduced in mammospheres treated with silibinin. Additionally, the expression of genes associated with stemness and metastasis was also decreased and the expression of genes associated with differentiation were increased. Intra-tumoral injection of 2 mg/kg silibinin decreased tumor volumes in mice by 2.8 fold. Conclusion: The present study demonstrated that silibinin may have exerted its anti-tumor effects in BC by targeting the BC stem cells, reducing the tumorgenicity and metastasis. Therefore, silibinin may be a potential adjuvant for treatment of BC.

13.
BMC Pediatr ; 22(1): 527, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064382

RESUMO

BACKGROUND: Chitosan is one of dietary fiber that has received great attention in improving obesity-related markers, but little is known on its effects on adolescents. OBJECTIVES: To analyze the effects of chitosan supplementation on obesity-related cardiometabolic markers and appetite-related hormones in adolescents with overweight or obesity. METHODS AND ANALYSIS: A randomized clinical trial was performed on 64 adolescents with overweight and obesity, who were randomly allocated to receive chitosan supplementation (n = 32) or placebo as control (n = 32) for 12 weeks. Anthropometric measures, lipid and glycemic profiles, and appetite-related hormones were examined. RESULTS: Sixty-one participants completed study (chitosan = 31, placebo = 30). Chitosan supplementation significantly improved anthropometric indicators of obesity (body weight: - 3.58 ± 2.17 kg, waist circumference: - 5.00 ± 3.11 cm, and body mass index: - 1.61 ± 0.99 kg/m2 and - 0.28 ± 0.19 Z-score), lipid (triglycerides: - 5.67 ± 9.24, total cholesterol: - 14.12 ± 13.34, LDL-C: - 7.18 ± 10.16, and HDL-C: 1.83 ± 4.64 mg/dL) and glycemic markers (insulin: - 5.51 ± 7.52 µIU/mL, fasting blood glucose: - 5.77 ± 6.93 mg/dL, and homeostasis model assessment of insulin resistance: - 0.24 ± 0.44), and appetite-related hormones (adiponectin: 1.69 ± 2.13 ng/dL, leptin - 19.40 ± 16.89, and neuropeptide Y: - 41.96 ± 79.34 ng/dL). When compared with the placebo group, chitosan supplementation had greater improvement in body weight, body mass index (kg/m2 and Z-score), waist circumference, as well as insulin, adiponectin, and leptin levels. Differences were significant according to P-value < 0.05. CONCLUSION: Chitosan supplementation can improve cardiometabolic parameters (anthropometric indicators of obesity and lipid and glycemic markers) and appetite-related hormones (adiponectin, leptin, and NPY) in adolescents with overweight or obesity.


Assuntos
Doenças Cardiovasculares , Quitosana , Adiponectina , Adolescente , Apetite , Glicemia , Índice de Massa Corporal , Peso Corporal , Quitosana/farmacologia , Quitosana/uso terapêutico , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Insulina/uso terapêutico , Leptina , Obesidade , Sobrepeso , Triglicerídeos
14.
Blood Coagul Fibrinolysis ; 33(3): 153-158, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35221320

RESUMO

Factor XIII (FXIII) deficiency is one of the most severe congenital bleeding disorders, with an estimated incidence of one person per one million. Patients with severe FXIII deficiency present a wide range of clinical manifestations, including umbilical cord bleeding, intracranial haemorrhage and recurrent miscarriages. Due to the high rate of life-threatening bleeding, primary prophylaxis is mandatory from the time of diagnosis. Although replacement therapy is the most common therapeutic choice, gene therapy remains the only curative option. In the present study, we assessed the efficacy of the clustered regularly interspaced short palindromic repeats - CRISPR-associated protein 9 (CRISPR/Cas9) system in the correction of the most common FXIII disease-causing mutation (c.562 T > C). A dermal fibroblast was harvested from the human skin biopsy of a young patient with FXIII deficiency. Sanger sequencing was used to confirm the presence of c.562 T>C mutation in the patient and in the harvested fibroblasts. PX459 vector was digested with BbsI restriction enzyme, and after annealing and ligation of two 20-bp guide-RNAs (g-RNAs) close to the PAM (NGG) sequence, the constructed vectors were amplified in Escherichia coli Top 10. Transfection was performed by a nucleofector device, and DNA extraction was performed after puromycin selection and serial dilution from potentially transfected colonies. A 50-bp template oligonucleotide was used to aid homologous repair for correction of the underlying mutation and synonymous mutation as an internal control. The synonymous mutation (AAT to ACT) near the mutation site was used as internal control. Sanger sequencing was done in order to check the gene correction. The c.562 T > C mutation was detected in homozygote state in the primary fibroblasts of the patient and wild-type alleles were confirmed in the normal individual. Colony PCR and sequencing revealed successful cloning of the designed gRNAs. The detected mutation was corrected from a homozygote mutant state (c.562 T > C) to a homozygote wild type in transfected dermal fibroblasts of the patient. The control mutation, as an internal control, was also corrected in the same fibroblasts in the heterozygote manner. The result of the study shows that the CRISPR/CAS9 gene editing system is an effective tool for correction of point mutations in transfected fibroblasts of patients with congenital FXIII deficiency and represents a new, potentially curative, option.


Assuntos
Deficiência do Fator XIII , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Escherichia coli , Fator XIII/genética , Deficiência do Fator XIII/genética , Deficiência do Fator XIII/terapia , Humanos , Mutação
15.
Cell Biol Int ; 46(6): 895-906, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35143089

RESUMO

S-phase kinase-associated protein 2 (Skp2) is a well-defined component of the Skp2-Culin1-F-box (SCF) E3 ubiquitin ligase complex, which is involved in cell cycle progression and considered a prognostic marker in cancers. Overexpression of Skp2 is frequently observed in patients with acute lymphoblastic leukemia (ALL). Inhibition of this protein may be a valuable strategy to induce apoptosis in malignant cells. Less well known is the effect of Skp2 inhibition on the potentiation of the chemotherapeutic-induced cell death in B cell precursor acute lymphoblastic leukemia (BCP-ALL). Our results demonstrated that inhibition of the Skp2 using SZL P1-41, not only resulted in caspase-mediated apoptosis but also potentiated doxorubicin-induced apoptosis in BCP-ALL cell lines (NALM-6 and SUP-B15). SZL P1-41 in combination with doxorubicin altered cell cycle distribution and the level of cyclins and cyclin-dependent kinases in BCP-ALL cells. DNA damage response genes were also upregulated in presence of the doxorubicin and SZL P1-41 in both cell lines. In conclusion, our results indicated that inhibition of Skp2 either alone or in a combination with doxorubicin may hold promise in the future treatment of BCP-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Quinases Associadas a Fase S , Apoptose , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Doxorrubicina/farmacologia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Quinases Associadas a Fase S/metabolismo
16.
Mol Biol Rep ; 49(3): 2025-2036, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138523

RESUMO

BACKGROUND: Myeloid cell leukemia-1 (MCL-1) is a component of the Bcl-2 anti-apoptotic family that plays a key role in cell proliferation and differentiation. Despite tremendous improvements toward identification of the role of MCL-1 in leukemia progression, the functional significance and molecular mechanism behind the effect of MCL-1 overexpression on the proliferation of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has not been clarified. In addition, less well appreciated is the effect of MCL-1 inhibition on the potentiation of doxorubicin-induced apoptosis in BCP-ALL cell lines. In the present study, we aimed to shed light on the anti-cancer properties of S63845, a potent Mcl-1 inhibitor, in BCP-ALL cell lines either alone or in combination with a chemotherapeutic drug. METHODS AND RESULTS: Mononuclear cells from patients with Pre-B ALL and BCP-ALL cell lines were treated with S63845 in presence or absence of doxorubicin, induction of apoptosis was evaluated using Annexin-V/PI staining kit. mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis, respectively. Our results declared that inhibition of Mcl-1 impairs cell growth and induces apoptosis in pre-B ALL cells through activation of caspase-3 and up-regulation of a repertoire of pro-apoptotic Bcl-2 family. Additionally, S63845 acts synergically with doxorubicin to induce apoptosis in BCP-ALL cell lines. CONCLUSIONS: Our data declared that MCL-1 inhibition alone or in combination with a chemotherapeutic agent is considered an appealing strategy for the induction of apoptosis in BCP-ALL cells.


Assuntos
Doxorrubicina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Int J Lab Hematol ; 44(3): 626-634, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35112486

RESUMO

BACKGROUND: Antithrombin (AT), protein C (PC), and protein S (PS) are natural anticoagulant proteins that deficiency in each of them is associated with an increased risk of venous thromboembolism.The overlapping of plasma levels of AT, PC, and PS between healthy individuals and heterozygote carriers poses significant challenges in precise diagnosis. This study aimed to evaluate the effect of most influencing variables on plasma levels of these proteins and propose specific reference intervals to improve the interpretation of the laboratory results. METHODS: This study was conducted on 1464 individuals who were referred to Massoud medical laboratory, Tehran, Iran, from 2019 to 2020. AT and PC were measured through chromogenic assay and PS plasma level with the clot-based assay. A multivariable linear regression model was performed to evaluate the effect of sex, age, oral contraceptive (OCP) intake, and menopause state. Normal deviate z value was used for different subgroups to justify the need for a separate reference interval. RESULTS: 1200 verified healthy individuals (434 males and 766 females), aged between 18 and 69 years were included in the study. The mean ± SD age of the participants was 39.78 ± 11.79 years. The age-related effects for AT were found in men. In females, increasing age was associated with a rise in AT, PC, and PS plasma levels. No sex difference was found in AT plasma level. OCP-taking is associated with a decrease in AT and an increase in PC plasma levels. CONCLUSION: This is the largest study ever conducted on healthy individuals in the Iranian population, using specific reference interval results in accurate diagnosis of true AT, PC, and PS deficiency.


Assuntos
Deficiência de Proteína C , Deficiência de Proteína S , Adolescente , Adulto , Idoso , Anticoagulantes , Antitrombina III , Antitrombinas , Anticoncepcionais Orais/efeitos adversos , Feminino , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Menopausa , Pessoa de Meia-Idade , Proteína C/metabolismo , Proteína S/metabolismo , Adulto Jovem
18.
J Biomed Mater Res B Appl Biomater ; 110(7): 1637-1650, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35113492

RESUMO

The reconstruction of chronic skin wounds remains a public health challenge in dermatology. Precisely controlling and monitoring the wound-healing process should result in enhanced outcomes for the patient. Cell-based therapies have shown great potential in medicine due to their immunomodulatory and healing properties. Herein, we produced activated macrophages by treating circulating monocytes with mesenchymal stem cell (MSC) supernatant. We also demonstrated the critical role of activated macrophages transplantation using amniotic membranes in accelerating wound healing in an animal wound model. The activated macrophages not only exhibited immunomodulatory cytokines like transforming growth factorß (TGFß) and interleukin 10 (and IL10) secretion but also showed attachment and proliferation ability on the amniotic membrane scaffold. Moreover, MSCs supernatant-treated cells also displayed significant ARG1, CD206, and IL 10 genes expression. Inspired by the in vitro results, we examined the in vivo therapeutic efficacy of the activated macrophage transplantation using an acellular amniotic membrane carrier in a full-thickness cutaneous wound model. The wound healing rate was significant in the group treated with macrophages generated via mesenchymal cell therapy seeded human amniotic membrane. There was less scarring in the wound sites after placing cell-scaffold constructs in the wound sites in the animal models. Overall, macrophages stimulated with mesenchymal cells' supernatant exhibited improved healing processes in incisional wounds by decreasing the inflammatory phase, increasing angiogenesis, and reducing scar tissue development.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Âmnio , Animais , Humanos , Macrófagos , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Pele , Cicatrização
19.
Biotechnol Appl Biochem ; 69(4): 1712-1722, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34415072

RESUMO

Oxidative damage by free radicals has a negative effect on blood quality during storage. Antioxidant nanoparticles can prevent oxidative stress. We use SOD-CAT-Alb-PEG-PLGA- nanoparticles to reduce the effects of oxidative stress in blood storage. Electrospray was employed to prepare nanoparticles. Nanoparticles entered the test bags and were kept for 35 days from the time of donation under standard conditions. On target days, experiments were performed on the samples taken. The examination included blood smear, red blood cells count, hemoglobin, hematocrit, K, Fe, glutathione peroxidase, glutathion reductase, glucose-6-phosphate dehydrogenase, prooxidant-antioxidant balance, malondialdehyde, and flow cytometric assay for phosphatidylserine. The repeated measures analysis was performed on samples every week. Morphological changes were less in the test group compared to the control. The quantitative hemolysis profile test showed significant changes in the test and control groups (p < 0.05) in consecutive weeks except for K and Fe. Oxidative stress parameters too showed a significant change during the target days of the examination (p < 0.05). Also, the phosphatidylserine expression was increased in control groups more than test in consecutive weeks (p < 0.05). It seems that the use of antioxidant nanoparticles improves the quality of stored red blood cells and can prevent posttransfusion complications and blood loss by reducing oxidative stress.


Assuntos
Antioxidantes , Nanopartículas , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Preservação de Sangue , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Estresse Oxidativo , Fosfatidilserinas , Superóxido Dismutase/metabolismo
20.
Exp Hematol Oncol ; 10(1): 51, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732266

RESUMO

Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...