Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 233, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965615

RESUMO

MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.

2.
Radiol Phys Technol ; 17(2): 441-450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630390

RESUMO

This research aimed to compare the quantitative imaging attributes of synthesized hafnium oxide nanoparticles (NPs) derived from UiO-66-NH2(Hf) and two gadolinium- and iodine-based clinical contrast agents (CAs) using cylindrical phantom. Aqueous solutions of the studied CAs, containing 2.5, 5, and 10 mg/mL of HfO2NPs, gadolinium, and iodine, were prepared. Constructed within a cylindrical phantom, 15 cc small tubes were filled with CAs. Maintaining constant mAs, the phantom underwent scanning at tube voltage variations from 80 to 140 kVp. The CT numbers were quantified in Hounsfield units (HU), and the contrast-to-noise ratios (CNR) were calculated within delineated regions of interest (ROI) for all CAs. The HfO2NPs at 140 kVp and concentration of 2.5 mg/ml exhibited 2.3- and 1.3-times higher CT numbers than iodine and gadolinium, respectively. Notably, gadolinium consistently displayed higher CT numbers than iodine across all exposure techniques and concentrations. At the highest tube potential, the maximum amount of the CAs CT numbers was attained, and at 140 kVp and concentration of 2.5 mg/ml of HfO2NPs the CNR surpassed iodine by 114%, and gadolinium by 30%, respectively. HfO2NPs, as a contrast agent, demonstrated superior image quality in terms of contrast and noise in comparison to iodine- and gadolinium-based contrast media, particularly at higher energies of X-ray in computed tomography. Thus, its utilization is highly recommended in CT.


Assuntos
Meios de Contraste , Háfnio , Nanopartículas , Óxidos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Meios de Contraste/química , Óxidos/química , Háfnio/química , Nanopartículas/química , Gadolínio/química , Iodo/química , Razão Sinal-Ruído
3.
Diagnostics (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899980

RESUMO

In recent years, there has been an increasing interest in using nanoparticles in the medical sciences. Today, metal nanoparticles have many applications in medicine for tumor visualization, drug delivery, and early diagnosis, with different modalities such as X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), etc., and treatment with radiation. This paper reviews recent findings of recent metal nanotheranostics in medical imaging and therapy. The study offers some critical insights into using different types of metal nanoparticles in medicine for cancer detection and treatment purposes. The data of this review study were gathered from multiple scientific citation websites such as Google Scholar, PubMed, Scopus, and Web of Science up through the end of January 2023. In the literature, many metal nanoparticles are used for medical applications. However, due to their high abundance, low price, and high performance for visualization and treatment, nanoparticles such as gold, bismuth, tungsten, tantalum, ytterbium, gadolinium, silver, iron, platinum, and lead have been investigated in this review study. This paper has highlighted the importance of gold, gadolinium, and iron-based metal nanoparticles in different forms for tumor visualization and treatment in medical applications due to their ease of functionalization, low toxicity, and superior biocompatibility.

4.
Curr Mol Med ; 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36573062

RESUMO

The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.

5.
Photodiagnosis Photodyn Ther ; 32: 102061, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068822

RESUMO

Maximal synergistic effect between photothermal therapy and radiotherapy (RT) may be achieved when the interval between these two modalities is optimal. In this study, we tried to determine the optimal schedule of the combined regime of RT and nano-photothermal therapy (NPTT), based on the cell cycle distribution and kinetics of cell death. To this end, alginate-coated iron oxide-gold core-shell nanoparticles (Fe3O4@Au/Alg NPs) were synthesized, characterized, and their photo-radio sensitization potency was evaluated on human nasopharyngeal cancer KB cells. Our results demonstrated that synthesized NPs have a good potential in radiotherapy and near-infrared (NIR) photothermal therapy. However, results from flow cytometry analysis indicated that a major portion of KB cells were accumulated in the most radiosensitive phases of cell cycle (G2/M) 24 h after NPTT. Moreover, the maximal synergistic anticancer efficacy (12.3% cell viability) was observed when RT was applied 24 h following the administration of NPTT (NPs [30 µg/mL, 4 h incubation time] + Laser [808 nm, 1 W/cm2, 5 min] + RT [6 Gy]). It is noteworthy that apoptosis was the dominant cell death pathway in the group of cells treated by combination of NPTT and RT. This highly synergistic anticancer efficacy provides a mechanistic basis for Fe3O4@Au/Alg NPs-mediated photothermal therapy combined with RT. Knowing such a basis is helpful to promote novel nanotechnology cancer treatment strategies.


Assuntos
Nanopartículas , Neoplasias Nasofaríngeas , Fotoquimioterapia , Linhagem Celular Tumoral , Ouro , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...