Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541456

RESUMO

High-temperature wetting of natural, high-purity quartz (SiO2) and liquid magnesium (Mg) was investigated at temperatures between 973 and 1273 K. Sessile drop experiments using the capillary purification (CP) procedure were carried out under an Ar gas atmosphere (N6.0), eliminating the native oxide layer on the surface of Mg melt. The results showed that the wetting behavior was strongly dependent on temperature. At 973 and 1073 K, the wetting system displayed relatively large contact angles of 90° and 65°, respectively, demonstrating modest wetting. The wetting increased to some extent by increasing the temperature to 1123 K with a wetting angle of 22°. However, the SiO2/Mg system demonstrated complete wetting at temperatures of 1173 K and above. Furthermore, interface microstructure examination showed different reaction product phases/microstructures, depending on the wetting experiment temperature.

2.
Materials (Basel) ; 16(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444907

RESUMO

Manganese sludge, an industrial waste product in the ferroalloy industry, contains various components and holds significant importance for sustainable development through its valorization. This study focuses on characterizing a manganese sludge and investigating its behavior during sulfuric acid leaching. The influence of process conditions, including temperature, acid concentration, liquid to solid ratio, and leaching duration, was examined. The results revealed that Mn, Zn, and K are the main leachable components, and their overall leaching rates increase with increasing temperature, liquid to solid ratio, and time. However, the acid concentration requires optimization. High leaching rates of 90% for Mn, 90% for Zn, and 100% for K were achieved. Moreover, it was found that Pb in the sludge is converted to sulfate during the leaching, which yields a sulfate concentrate rich in PbSO4. The leaching process for Mn and Zn species appears to follow a second or third order reaction, and the calculation of rate constants indicated that Mn leaching kinetics are two to five times higher than those for Zn. Thermodynamic calculations were employed to evaluate the main chemical reactions occurring during leaching.

3.
Materials (Basel) ; 16(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297229

RESUMO

Fundamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1-4) in the temperature range of 1073 to 1373 K with different reaction times (10-240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO2 mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations.

4.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233875

RESUMO

In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of 2 and 4. Rietveld refinement of X-ray diffraction patterns was used to obtain phase distributions in the reacted samples. SEM and EPMA examinations were performed to evaluate the microstructural change during reduction. The results indicated that the reduction reaction rate was slower at a mole ratio of 2 than 4 at the same temperature, as illustrated by the total amount of Si formed (the percent of Si that is reduced to either Si or Mg2Si to total amount of Si) being 59% and 75%, respectively, after 240 min reaction time for mole ratios of 2 and 4. At the mole ratio of 4, the reaction rate was strongly dependent on the reaction temperature, where SiO2 was completely reduced after 20 min at 1273 K. At the lower temperatures of 1173 and 1073 K, total Si formed was 75% and 39%, respectively, after 240 min reaction time. The results of the current work show that Mg2Si can be produced through the magnesiothermic reduction of natural quartz with high yield. The obtained Mg2Si can be processed further to produce silane gas as a precursor to high purity Si. The combination of these two processes offers the potential for a more direct and low carbon method to produce Si with high purity.

5.
Materials (Basel) ; 15(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079395

RESUMO

The hydrogen reduction of bauxite residue lime pellets at elevated temperatures was carried out to recover iron and alumina from the bauxite residue in a new process route. Prior to the H2 reduction, oxide pellets were initially prepared via the mixing of an industrial bauxite residue with fine calcite powder followed by calcination and high-temperature sintering. The chemical, compositional, and microstructural properties of both oxide and reduced pellets were studied by advanced characterization techniques. It was found that iron in the oxide pellets is mainly in the form of brownmillerite, and calcium-iron-titanate phases, while upon reduction they are converted to wüstite and shulamitite intermediate phases and further to metallic iron. Moreover, it was found that the reduction at lower temperature of 1000 °C is faster than that at higher temperatures of 1100 °C and 1200 °C. The slower rate and extent of reduction at the higher temperatures is attributed to the porosity loss and reduction mechanism change to a diffusion-controlled process step. In addition, it was found that Al-containing phases in the raw materials are converted mainly to gehlenite in sintered pellets and further to the leachable mayenite phase. The alkaline leaching of selected reduced pellets by a sodium carbonate solution yielded up to 87% Al recovery into the solution, while the metallic iron was not affected.

6.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057123

RESUMO

The recovery of Mn and Al from two industrial waste of ferromanganese and aluminum production processes was investigated via implementing a high temperature smelting-aluminothermic reduction process. The experiments were carried out with or without CaO flux addition, and two dross qualities. It was observed that the prepared mixtures of the materials yield homogeneous metal and slag products in terms of chemical composition and the distribution of phases. However, the separation of produced metal phase from the slag at elevated temperatures occurs when a higher amount of CaO is added. Viscosity calculations and equilibrium study indicated that the better metal and slag separation is obtained when the produced slag has lower viscosity and lower liquidus. It was found that the process yields Al-Mn-Si alloys, and it is accompanied with complete recovery of Mn, Si and Fe and the unreacted Al in the process. Moreover, the quality of metal product was less dependent on the slightly different dross quality, and the concentration of minor Ca in metal is slightly increased with significant increase of CaO in the slag phase.

7.
Materials (Basel) ; 14(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947334

RESUMO

This work evaluates the characteristics of calcium aluminate slag and pig iron samples obtained from the smelting of calcined and reduced diasporic bauxite ore. The study is conducted in the Pedersen process framework, which is a method to produce alumina from low-grade resources. Parameters such as the effect of crucible type, lime addition, and atmospheric conditions are studied considering the characteristics of the product pig irons and calcium aluminate slags for further uses. The behavior of the bauxite and distribution of the species between slag and metal was assessed based on the applied analytical techniques and thermodynamic calculations. Iron was reduced and separated from the slags in the presence of carbon (graphite crucible) for both the reduced and calcined bauxite. Si and Ti were mainly concentrated in the slags. Iron was separated from the slag in the absence of carbon (alumina crucible) for the H2-reduced bauxite. The results show that slags with increased lime additions are composed mainly of 5CaO.Al2O3 and CaO.Al2O3, that are considered highly leachable compounds. An optimum CaO/Al2O3 mass ratio of 1.12 was suggested. The presence of O2 and/or OH- in the furnace atmosphere will result in the formation of 12CaO.7Al2O3.

8.
Materials (Basel) ; 14(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361311

RESUMO

The valorization of aluminum dross for Al recovery was performed via its mixing with metallic copper to produce Al-Cu alloys. This approach was with the intention of establishing a new smelting process to treat the dross with Cu scrap use. To evaluate the high temperature interaction of the materials, the wettability of a Cu-containing aluminum alloy with the non-metallic components of the dross was studied by the sessile drop method. It was found that the wetting was weak via temperature changes at 973-1373 K, and consequently no proper metal separation occurred. To better separate the metallic and non-metallic phases with larger density differences, a higher Cu portion was considered to obtain a significantly denser metallic phase, and it was found that partial separation of the Al in an Al-Cu alloy is possible. The complete separation of the metallic components of the dross was, however, experienced by the dross and copper melting with the addition of pre-melted calcium aluminate slags at elevated temperatures. It was found that Al-Cu alloys were produced and separated from the adjacent slags, and the aluminum oxide of the dross ended up in the slag phase. Moreover, the characteristics of the produced slags depend on the process charge.

9.
Langmuir ; 37(24): 7473-7485, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34098717

RESUMO

The evaporation of P from liquid Si under vacuum and reduced pressures of H2, He, and Ar was studied to evaluate the feasibility of effective P removal with insignificant Si loss. It was found that the introduction of Ar and He inert gases at low pressures reduces the rate of P removal, and their pressure decrease will increase the process rate. Moreover, the kinetics of P removal was higher in He than in Ar, with simultaneous lower Si loss. Under reduced pressures of H2 gas, however, the P removal rate was higher than that under vacuum conditions with the lowest Si loss. Quantum chemistry and dynamics simulations were applied, and the results indicated that P can maintain its momentum for longer distances in H2 once it is evaporated from the melt surface and then can travel far away from the surface, while Si atoms lose their momentum in closer distances, yielding less net Si flux to the gas phase. Moreover, this distance is significantly increased with decreasing pressure for H2, He, and Ar gases; however, it is the largest for H2 and the lowest for Ar for a given pressure, while the temperature effect is insignificant. The rate of P evaporation was accelerated by applying an additional vacuum tube close to the melt surface for taking out the hot gas particles before they lose their temperature and velocity. It was shown that this technique contributes to the rate of process by preventing condensing gas stream back to the melt surface.

10.
Materials (Basel) ; 14(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450929

RESUMO

The aluminothermic reduction process of manganese oxide from different slags by aluminum was investigated using pure Al and two types of industrial Al dross. Two types of MnO-containing slags were used: a synthetic highly pure CaO-MnO slag and an industrial high carbon ferromanganese slag. Mixtures of Al and slag with more Al than the stoichiometry were heated and interacted in an induction furnace up to 1873 K, yielding molten metal and slag products. The characterization of the produced metal and slag phases indicated that the complete reduction of MnO occurs via the aluminothermic process. Moreover, as the Al content in the charge was high, it also completely reduced SiO2 in the industrial ferromanganese slag. A small mass transport of Ca and Mg into the metal phase was also observed, which was shown to be affected by the slag chemistry. The obtained results indicated that the valorization of both Al dross and FeMn slag in a single process for the production of Mn, Mn-Al, and Mn-Al-Si alloys is possible. Moreover, the energy balance for the process indicated that the energy consumption of the process to produce Mn-Al alloys via the proposed process is insignificant due to the highly exothermic reactions at high temperatures.

11.
Materials (Basel) ; 13(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861659

RESUMO

Si-B alloys are proposed as a potential phase change material (PCM) in the novel high temperature thermal energy storage systems. For successfully introducing the new PCM, the selection of proper refractory material in the PCM container is vital. At present, graphite is chosen as a potential refractory material for the PCM container, due to its high temperature stability, low thermal expansion, and high thermal conductivity. The Si-B alloys and the high-temperature interaction with graphite are hence studied. The phase formation in the Si-B alloys and the interaction with graphite at B content of 2-11 mass % and temperatures of 1450-1750 °C were investigated. Carbides were observed at the interface between the solidified alloys and the graphite. A single SiC layer was produced at B content of 2 and 3.25 mass %. Otherwise, SiC and B4C layers were generated at B content higher than 5 mass %. In the Si-B-C system, the phase formation is dependent on the B content. Moreover, the equilibrium B content is calculated to be 3.66 mass % in the molten Si-B alloys at 1450 °C in equilibrium with SiC and B4C, based on the experimental results. In this regard, the eutectic alloy (3.25 mass % B) is recommended to be used as the new PCM in the graphite container, due to that it produces simple phases and also because it is expected not to deplete any B to the B4C layer.

12.
Materials (Basel) ; 12(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331022

RESUMO

Fe-26.38Si-9.35B eutectic alloy is proposed as a phase change material (PCM) as it exhibits high latent heat, high thermal conductivity, moderate melting point, and low cost. For successful implementation of it in the latent heat thermal energy storage (LHTES) systems, we investigate the use of graphite as a refractory material that withstands long-term melting/solidification in contact with the Fe-26.38Si-9.35B alloy. The PCM has been thermally cycled up to 1-4 times below and above its melting point at the temperature interval of 20 °C or 100 °C. It is observed that this eutectic alloy shows good thermal stability over a small temperature range of 1057-1257 °C. Some SiC and B4C solid precipitation will be formed at the top of the alloy. However, it does not seem to increase with time. The graphite crucible as a refractory material will produce a protective layer of SiC and B4C that will hinder the interaction between the PCM and the crucible. The small volume change during solidification will not break the graphite crucible during cycling. The chemical wear or dissolution of the crucible is negligible. It demonstrates the viability of Fe-26.38Si-9.35B alloy as a heat storage material in this type of container.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...