Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(2): 445-454, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37806438

RESUMO

MicroRNAs (miRNAs) have a crucial role in the regulation of gene expression in tumor development, invasion, and metastasis. Herein, miRNA-340 (miR-340) has been shown to play tumor suppressor activity in breast cancer (BC). However, the clinical applications of miRNAs request the development of safe and effective delivery systems capable of protecting nucleic acids from degradation. In this study, biodegradable chitosan nanoparticles incorporating miR-340 plasmid DNA (pDNA) (miR-340 CNPs) were synthesized and characterized. Then, the anti-tumor effects of miR-340 CNPs were investigated using 4T1 BCE cells. The spherical nanoparticles (NPs) with an appropriate mean diameter of around 266 ± 9.3 nm and zeta potential of +17 ± 1.8 mV were successfully prepared. The NPs showed good stability, high entrapment efficiency and a reasonable release behavior, meanwhile their high resistance against enzymatic degradation was verified. Furthermore, NPs demonstrated appropriate transfection efficiency and could induce apoptosis, so had toxicity in 4T1 BCE cells. Also, CD47 expression on the surface of cancer cells was significantly reduced after treatment with miR-340 CNPs. The results showed that miR-340 CNPs augmented the expression of P-27 in BC cells. Furthermore, miR-340 CNPs caused down-regulation of BRP-39 (breast regression protein-39) increasingly suggested as a prognostic biomarker for neoplastic diseases like BC. In conclusion, our data show that miR-340 CNPs can be considered as a promising new platform for BC gene therapy.


Assuntos
Neoplasias da Mama , Quitosana , MicroRNAs , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quitosana/metabolismo , MicroRNAs/genética , Apoptose , Regulação para Baixo
2.
Immunol Lett ; 248: 31-36, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667453

RESUMO

M2 macrophages, the major component of tumor microenvironment, are recognized as important player in tumor progression. M2 macrophages mediate this effect by promoting tumor angiogenesis, tumor metastasis, and suppression of tumor immunity. Reprogramming of M2 macrophages can serve as a promising strategy in cancer immunotherapy. In this study, we constructed pigment epithelium-derived factor (PEDF) expressing vector and transfected MDA-MB-231 cells with this construct. Then, exosomes were isolated from transfected cells and M2 macrophages were incubated with isolated exosomes from transfected cell. The effect of isolated exosomes on macrophage polarization was examined by real-time PCR and ELISA. The results demonstrated reprogramming of M2 macrophages after incubation with isolated exosomes from PEDF transfected cells. M2-to-M1 repolarization of macrophages was confirmed by upregulation of CD80, IRF5, MCP1, and IL-1ß and repression of CD206, Arg, TGM2, and TGF-ß. Therefore, these findings revealed that introducing PEDF into exosomes by genetic manipulation of parent cells may be a potential approach for reprogramming of M2 macrophages in cancer.


Assuntos
Neoplasias da Mama , Exossomos , Serpinas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas do Olho , Feminino , Humanos , Macrófagos , Fatores de Crescimento Neural , Serpinas/genética , Serpinas/farmacologia , Microambiente Tumoral
3.
Life Sci ; 297: 120459, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248524

RESUMO

BACKGROUND AND AIM: MiR-155 could act as a key modulator of different aspects of immune system including Th1 responses. In this study, we designed chitosan nanoparticles containing miR-155-expressing plasmid and explored their effects as an adjuvant to enhance Th1 responses for potential future application against intracellular pathogens. METHODS: Nanoparticles were formulated by complex coacervation method and characterized for physicochemical and functional characteristics. Transfection efficiency in Raw 264.7 cells, effects on miR-155 target genes and NO production were evaluated. The prepared nanoparticles were co-administered as an adjuvant with ovalbumin to immunize mice and finally production of IFN-γ and IL-4 were measured by ELISA in splenocyte recall responses. RESULTS: The prepared nanoparticles had the mean size of 244 nm and zeta potential of +17 mV, respectively. Electrophoresis analysis indicated the high capability of nanoparticles to protect the plasmid from DNaseI degradation. Furthermore, nanoparticles showed an appropriate transfection efficiency in Raw 264.7 cells and could downregulate the expression of miR-155 target genes and also upregulate NO production. In vivo immunization examinations revealed successful shift of T cell responses toward Th1. CONCLUSION: Our data suggests the high potential of chitosan nanoparticles containing miR-155-expressing plasmid as an adjuvant for significantly enhanced Th1-biased immune responses upon immunization with a given antigen.


Assuntos
Adjuvantes Imunológicos , Quitosana , MicroRNAs , Nanopartículas , Células Th1/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Quitosana/química , Imunidade , Camundongos , MicroRNAs/genética , Nanopartículas/química , Óxido Nítrico/metabolismo , Ovalbumina , Plasmídeos , Células RAW 264.7
4.
Int J Biol Macromol ; 183: 235-244, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33930442

RESUMO

The progressive and fatal outbreak of the newly emerged coronavirus, SARS-CoV-2, necessitates rigorous collaboration of all health care systems and researchers from all around the world to bring such a devastating pandemic under control. As there is so far no officially approved drug or ideal vaccine for this disease, investigations on this infectious disease are actively pursued. Chitin and chitosan have shown promising results against viral infections. In this review, we first delve into the problematic consequences of viral pandemics followed by an introduction on SARS-CoV-2 taxonomical classification. Then, we elaborate on the immunology of COVID-19. Common antiviral therapies and their related limitations are described and finally, the potential applicability of chitin and chitosan to fight this overwhelming viral pandemic is addressed.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Quitina/uso terapêutico , Quitosana/uso terapêutico , Pandemias , SARS-CoV-2 , COVID-19/epidemiologia , Humanos
5.
Biomed Pharmacother ; 131: 110694, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920511

RESUMO

As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...