Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(33): eadh0150, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585538

RESUMO

Recurring slow slip along near-trench megathrust faults occurs at many subduction zones, but for unknown reasons, this process is not universal. Fluid overpressures are implicated in encouraging slow slip; however, links between slow slip, fluid content, and hydrogeology remain poorly known in natural systems. Three-dimensional seismic imaging and ocean drilling at the Hikurangi margin reveal a widespread and previously unknown fluid reservoir within the extensively hydrated (up to 47 vol % H2O) volcanic upper crust of the subducting Hikurangi Plateau large igneous province. This ~1.5 km thick volcaniclastic upper crust readily dewaters with subduction but retains half of its fluid content upon reaching regions with well-characterized slow slip. We suggest that volcaniclastic-rich upper crust at volcanic plateaus and seamounts is a major source of water that contributes to the fluid budget in subduction zones and may drive fluid overpressures along the megathrust that give rise to frequent shallow slow slip.

2.
Ground Water ; 61(3): 318-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36103019

RESUMO

Per- and polyfluoroalkyl substances (PFAS) can represent a significant human health risk if present in aquifers used as a drinking water source. Accurate assessment of PFAS exposure risks requires an improved understanding of field-scale PFAS transport in groundwater. Activities at a former firefighter training site in University Park, Pennsylvania introduced perfluorooctanesulfonic acid (PFOS) to the underlying dolomite aquifer. Groundwater sampling from 2015 to 2018 delineated a PFOS plume with two concentration maxima located approximately 20 and approximately 220 m downgradient of the training site, separated by a zone of lower concentrations. We use a combination of analytical and numerical models, informed by independent measurements of aquifer porosity, hydraulic conductivity, and organic carbon content, to interpret the field observations. Our analysis demonstrates that preferential retention and transport resulting from simple heterogeneity in bedrock sorption, as caused by organic carbon (OC) content variability, provides a plausible explanation for plume separation. Dissolved PFOS partitions strongly to organic solids (high Koc ), so even a small OC (<1 wt%) significantly retards PFOS transport, whereas zones with little to no OC allow for transport rates that approximate those of a conservative solute. Our work highlights an important consideration for modeling the groundwater transport of PFOS, and other compounds with high Koc . In aquifers with discrete layers of varying OC, models using a uniform site-average OC will underestimate transport distances, thereby misrepresenting exposure risks for downgradient communities.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Carbono , Poluentes Químicos da Água/análise
3.
Sci Adv ; 6(13): eaay3314, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32232148

RESUMO

Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.

4.
Science ; 356(6343): 1157-1160, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28619941

RESUMO

The discovery of slow earthquakes has revolutionized the field of earthquake seismology. Defining the locations of these events and the conditions that favor their occurrence provides important insights into the slip behavior of tectonic faults. We report on a family of recurring slow-slip events (SSEs) on the plate interface immediately seaward of repeated historical moment magnitude (Mw) 8 earthquake rupture areas offshore of Japan. The SSEs continue for days to several weeks, include both spontaneous and triggered slip, recur every 8 to 15 months, and are accompanied by swarms of low-frequency tremors. We can explain the SSEs with 1 to 4 centimeters of slip along the megathrust, centered 25 to 35 kilometers (km) from the trench (4 to 10 km depth). The SSEs accommodate 30 to 55% of the plate motion, indicating frequent release of accumulated strain near the trench.


Assuntos
Fenômenos Geológicos , Terremotos , Japão
5.
Nature ; 427(6970): 142-4, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14712273

RESUMO

Palaeoceanographic data have been used to suggest that methane hydrates play a significant role in global climate change. The mechanism by which methane is released during periods of global warming is, however, poorly understood. In particular, the size and role of the free-gas zone below gas-hydrate provinces remain relatively unconstrained, largely because the base of the free-gas zone is not a phase boundary and has thus defied systematic description. Here we evaluate the possibility that the maximum thickness of an interconnected free-gas zone is mechanically regulated by valving caused by fault slip in overlying sediments. Our results suggest that a critical gas column exists below most hydrate provinces in basin settings, implying that these provinces are poised for mechanical failure and are therefore highly sensitive to changes in ambient conditions. We estimate that the global free-gas reservoir may contain from one-sixth to two-thirds of the total methane trapped in hydrate. If gas accumulations are critically thick along passive continental slopes, we calculate that a 5 degrees C temperature increase at the sea floor could result in a release of approximately 2,000 Gt of methane from the free-gas zone, offering a mechanism for rapid methane release during global warming events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...