Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 083001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709752

RESUMO

The first direct experimental observation of an electric quadrupole (E2) absorption transition between bound states of an atomic negative ion has been made. The transition was observed in the negative ion of bismuth by resonant (1+1) photon detachment from Bi^{-} via ^{3}P_{2}→^{3}P_{0} excitation. The E2 transition properties were completely independently calculated using a hybrid theoretical approach to account for the strong multilevel electron interactions and relativistic effects. The experimental and ab initio theoretical results are in excellent agreement, providing valuable new insight into this complex system and forbidden transitions in negative ions more generally.

2.
Phys Rev Lett ; 127(25): 253001, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029415

RESUMO

Determination of nuclear moments for many nuclei relies on the computation of hyperfine constants, with theoretical uncertainties directly affecting the resulting uncertainties of the nuclear moments. In this work, we improve the precision of such a method by including for the first time an iterative solution of equations for the core triple cluster amplitudes into the relativistic coupled-cluster method, with large-scale complete basis sets. We carried out calculations of the energies and magnetic dipole and electric quadrupole hyperfine structure constants for the low-lying states of ^{229}Th^{3+} in the framework of such a relativistic coupled-cluster single double triple method. We present a detailed study of various corrections to all calculated properties. Using the theory results and experimental data, we found the nuclear magnetic dipole and electric quadrupole moments to be µ=0.366(6)µ_{N} and Q=3.11(2) eb, respectively, and reduce the uncertainty of the quadrupole moment by a factor of 3. The Bohr-Weisskopf effect of the finite nuclear magnetization is investigated, with bounds placed on the deviation of the magnetization distribution from the uniform one.

3.
Phys Rev Lett ; 124(20): 203201, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501054

RESUMO

We demonstrate state-dependent optical lattices for the Sr optical qubit at the tune-out wavelength for its ground state. We tightly trap excited state atoms while suppressing the effect of the lattice on ground state atoms by more than 4 orders of magnitude. This highly independent control over the qubit states removes inelastic excited state collisions as the main obstacle for quantum simulation and computation schemes based on the Sr optical qubit. Our results also reveal large discrepancies in the atomic data used to calibrate the largest systematic effect of Sr optical lattice clocks.

4.
Phys Rev Lett ; 124(16): 163001, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383935

RESUMO

We develop a broadly applicable approach that drastically increases the ability to predict the properties of complex atoms accurately. We apply it to the case of Ir^{17+}, which is of particular interest for the development of novel atomic clocks with a high sensitivity to the variation of the fine-structure constant and to dark matter searches. In general, clock transitions are weak and very difficult to identify without accurate theoretical predictions. In the case of Ir^{17+}, even stronger electric-dipole (E1) transitions have eluded observation despite years of effort, raising the possibility that the theoretical predictions are grossly wrong. In this work, we provide accurate predictions of the transition wavelengths and E1 transition rates for Ir^{17+}. Our results explain the lack of observations of the E1 transitions and provide a pathway toward the detection of clock transitions. The computational advances we demonstrate in this work are widely applicable to most elements in the periodic table and will allow us to solve numerous problems in atomic physics, astrophysics, and plasma physics.

5.
Phys Rev Lett ; 123(11): 113201, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573273

RESUMO

We experimentally and theoretically determine the magic wavelength of the (5s^{2})^{1}S_{0}-(5s5p)^{3}P_{0} clock transition of ^{111}Cd to be 419.88(14) and 420.1(7) nm. To perform Lamb-Dicke spectroscopy of the clock transition, we use narrow-line laser cooling on the ^{1}S_{0}-^{3}P_{1} transition to cool the atoms to 6 µK and load them into an optical lattice. Cadmium is an attractive candidate for optical lattice clocks because it has a small sensitivity to blackbody radiation and its efficient narrow-line cooling mitigates higher order light shifts. We calculate the blackbody shift, including the dynamic correction, to be fractionally 2.83(8)×10^{-16} at 300 K, an order of magnitude smaller than that of Sr and Yb. We also report calculations of the Cd ^{1}P_{1} lifetime and the ground state C_{6} coefficient.

6.
Phys Rev Lett ; 123(6): 063201, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491162

RESUMO

We demonstrate precision measurement and control of inhomogeneous broadening in a multi-ion clock consisting of three ^{176}Lu^{+} ions. Microwave spectroscopy between hyperfine states in the ^{3}D_{1} level is used to characterize differential systematic shifts between ions, most notably those associated with the electric quadrupole moment. By appropriate alignment of the magnetic field, we demonstrate suppression of these effects to the ∼10^{-17} level relative to the ^{1}S_{0}↔^{3}D_{1} optical transition frequency. Correlation spectroscopy on the optical transition demonstrates the feasibility of a 10-s Ramsey interrogation in the three ion configuration with a corresponding projection noise limited stability of σ(τ)=8.2×10^{-17}/sqrt[τ].

7.
Phys Rev Lett ; 121(21): 213001, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30517806

RESUMO

The isotope ^{229}Th is unique in that it possesses an isomeric state of only a few electron volts above the ground state, suitable for nuclear laser excitation. An optical clock based on this transition is expected to be a very sensitive probe for variations of fundamental constants, but the nuclear properties of both states have to be determined precisely to derive the actual sensitivity. We carry out isotope shift calculations in Th^{+} and Th^{2+} including the specific mass shift, using a combination of configuration interaction and all-order linearized coupled-cluster methods and estimate the uncertainty of this approach. We perform experimental measurements of the hyperfine structure of Th^{2+} and isotopic shift between ^{229}Th^{2+} and ^{232}Th^{2+} to extract the difference in root-mean-square radii as δ⟨r^{2}⟩^{232,229}=0.299(15) fm^{2}. Using the recently measured values of the isomer shift of lines of ^{229m}Th, we derive the value for the mean-square radius change between ^{229}Th and its low-lying isomer ^{229m}Th to be δ⟨r^{2}⟩^{229m,229}=0.0105(13) fm^{2}.

8.
Phys Rev Lett ; 120(23): 232503, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932712

RESUMO

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton density distribution in ^{252,254}No isotopes. Finally, the hyperfine splitting of ^{253}No was evaluated, enabling a complementary measure of its (quadrupole) deformation, as well as an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.

9.
Phys Rev Lett ; 120(13): 133205, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694180

RESUMO

Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91) THz and its transition rate to be A=4.90(50)×10^{4} s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

10.
Phys Rev Lett ; 120(10): 103202, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570329

RESUMO

We describe a broadly applicable experimental proposal to search for the violation of local Lorentz invariance (LLI) with atomic systems. The new scheme uses dynamic decoupling and can be implemented in current atomic clock experiments, with both single ions and arrays of neutral atoms. Moreover, the scheme can be performed on systems with no optical transitions, and therefore it is also applicable to highly charged ions which exhibit a particularly high sensitivity to Lorentz invariance violation. We show the results of an experiment measuring the expected signal of this proposal using a two-ion crystal of ^{88}Sr^{+} ions. We also carry out a systematic study of the sensitivity of highly charged ions to LLI to identify the best candidates for the LLI tests.

11.
Phys Rev Lett ; 120(6): 063204, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481257

RESUMO

We address the problem of the lattice Stark shifts in the Sr clock caused by the multipolar M1 and E2 atom-field interactions and by the term nonlinear in lattice intensity and determined by the hyperpolarizability. We develop an approach to calculate hyperpolarizabilities for atoms and ions based on a solution of the inhomogeneous equation which allows us to effectively and accurately carry out complete summations over intermediate states. We apply our method to the calculation of the hyperpolarizabilities for the clock states in Sr. We also carry out an accurate calculation of the multipolar polarizabilities for these states at the magic frequency. Understanding these Stark shifts in optical lattice clocks is crucial for further improvement of the clock accuracy.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32201752

RESUMO

Energy levels, wavelengths, magnetic-dipole and electric-quadrupole transition rates between the low-lying states are evaluated for W51+ to W54+ ions with 3d n (n = 2 to 5) electronic configurations by using an approach combining configuration interaction with the linearized coupled-cluster single-double method. The QED corrections are directly incorporated into the calculations and their effect is studied in detail. Uncertainties of the calculations are discussed. This study of such highly charged ions with the present method opens the way for future applications allowing an accurate prediction of properties for a very wide range of highly charged ions aimed at providing precision benchmarks for various applications.

13.
Phys Rev Lett ; 117(25): 253001, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036218

RESUMO

The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

14.
Phys Rev A (Coll Park) ; 94(4)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28058290

RESUMO

We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a relativistic hybrid method that combines configuration interaction (CI) with the linearized coupled-cluster approach. Extensive study of the completeness of the four-electron CI calculations for Hf and Rf was carried out. As a test of theoretical accuracy, we also calculated ionization potential of Yb, Lu, Hf, and their ions, which are homologues of the superheavy elements of this study.

15.
Phys Rev Lett ; 115(24): 240801, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705620

RESUMO

We optically excite the electronic state 3s3p ^{3}P_{0} in ^{24}Mg atoms, laser cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift, and the transition frequency to be 468.46(21) nm, -206.6(2.0) MHz/T^{2}, and 655 058 646 691(101) kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also develop a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift, and discuss a clock based on bosonic magnesium.

16.
Nat Commun ; 6: 6896, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25898253

RESUMO

The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. Here we take an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Our (87)Sr optical lattice clock now achieves fractional stability of 2.2 × 10(-16) at 1 s. With this improved stability, we perform a new accuracy evaluation of our clock, reducing many systematic uncertainties that limited our previous measurements, such as those in the lattice ac Stark shift, the atoms' thermal environment and the atomic response to room-temperature blackbody radiation. Our combined measurements have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10(-18) in fractional frequency units.

17.
Nature ; 517(7536): 592-5, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25631446

RESUMO

All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation at levels comparable to the ratio between the electroweak and Planck energy scales. Our experiment demonstrates the potential of quantum information techniques in the search for physics beyond the standard model.

18.
Science ; 345(6203): 1467-73, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25147278

RESUMO

SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from interparticle interactions. Taking advantage of the high measurement precision offered by an ultrastable laser, we report a spectroscopic observation of SU(N ≤ 10) symmetry in (87)Sr. By encoding the electronic orbital degree of freedom in two clock states while keeping the system open to as many as 10 nuclear spin sublevels, we probed the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps; we studied the spin-orbital quantum dynamics and determined the relevant interaction parameters. This study lays the groundwork for using alkaline-earth atoms as testbeds for important orbital models.

19.
Phys Rev Lett ; 113(3): 030801, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25083627

RESUMO

We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications.

20.
Phys Rev Lett ; 108(17): 173001, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680858

RESUMO

The goal of this work is to resolve the present controversy in the value of the electric dipole moment (EDM) enhancement factor of Tl. We carry out several calculations by different high-precision methods, study previously omitted corrections, as well as test our methodology on other, parity conserving, quantities. We find the EDM enhancement factor of Tl to be equal to -573(20). This value is 20% larger than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees very well with several earlier results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...