Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 328: 116967, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493542

RESUMO

Excess manganese (Mn) concentrations can pose environmental and health risks. Currently, research on Mn removal by electrocoagulation (EC) using transition metal electrodes and the determination of its potential environmental impacts is limited. This study aims to assess the electrocoagulation process's performance with a titanium electrode as a sacrificial anode while also performing a life cycle assessment (LCA) of the process. The initial pH, current density (CD), electrode spacings, electrolyte types, concentrations, and electrode arrangement were all examined. For synthetic wastewater, most of the experiments used a concentration of Mn of 2 mg/L and sodium chloride as a supporting electrolyte at a concentration of 1 g/L. LCA software (OpenLCA 1.11) was used to assess the potential environmental impacts. Optimal operating conditions within the experimental range were as follows: initial pH = 7, CD = 10 mA/cm2, gap distance = 2 cm, and 1 g/L NaCl. Under these conditions, the maximum Mn removal efficiency was 96.5% after 60 min. There was an improvement of 2% rise after 60 min when the temperature increased from 20 °C to 40 °C. For real wastewater, the highest removal efficiencies for Mn and chemical oxygen demand after 60 min were 91.3% and 92%, respectively. The pseudo second order model provides the highest coefficient of determination for expressing the experimental data. Global warming, human non-carcinogenic toxicity, and terrestrial ecotoxicity were the most important categories of impact examined in this work according to the LCA (0.00064 kg CO2 eq, 0.00018 kg 1,4-DCB, and 0.00028 kg 1,4-DCB, respectively). To effectively remove Mn using EC with Ti electrodes, it appears that a period of electrolysis of 10 min would be sufficient under most of the conditions investigated in this study. The reduction in the electrolysis time will lead to a reduction in the operating costs of the system.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Animais , Manganês , Titânio , Eletrocoagulação , Eletrólitos , Eletrodos , Cloreto de Sódio , Estágios do Ciclo de Vida , Eliminação de Resíduos Líquidos
2.
Environ Sci Pollut Res Int ; 30(10): 26650-26662, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369444

RESUMO

Economically feasible approaches are needed for wastewater treatment. Electrocoagulation (EC) is an electrochemical treatment method that removes various pollutants from wastewater. It has grown in popularity over conventional treatment methods, especially in industrial wastewater, due to its high performance and the ability to remove toxic compounds. However, it is crucial to reduce the costs associated with EC for widespread implementation. It is also important to decrease nickel (Ni) concentrations in wastewater to prevent potential health and environmental problems. Therefore, this study investigates Ni removal from synthetic and real wastewater using electrocoagulation. Zinc, as a novel electrode, was used as the sacrificial anode. Several operating conditions were assessed, including current density, initial pH, electrolysis time, and spacing between electrodes. The maximum Ni removal efficiency, after 90 min, reached 99.9% at a current density of 10 mA/cm2 when the pH was 9.2 and the gap distance was 4 cm. The Ni removal rate reached 94.4% and 94.9% at a 2- and 6-cm spacing, respectively, after 90 min. Anode morphology, kinetic modeling, electrical energy consumption, and cost analysis were also investigated. The type of corrosion was uniform, which is easily predicted compared to pitting corrosion. The comparison between chemical coagulation and electrocoagulation was also reported. Experimental results indicated that the maximum Ni removal rates reached 99.89% after 90 min. The optimum spacing between electrodes was 4 cm, and the optimum current density was 10 mA/cm2. Additionally, the kinetic data were best represented through the second-order Lagergren model. The results demonstrated that the electrocoagulation performance was better than that of chemical coagulation for Ni removal. The maximum electrical energy consumption was 23.79 KWh/m3 for Ni removal.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Níquel/análise , Zinco/análise , Eletrocoagulação/métodos , Custos e Análise de Custo , Eletrodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...