Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 28: 177-189, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700122

RESUMO

In vivo induction of antigen (Ag)-specific regulatory T cells (Treg) is considered the holy grail of therapeutic strategies for restoring tolerance in autoimmunity. Unfortunately, in the autoimmune disease multiple sclerosis, an effective and durable therapy targeting the diverse repertoire of emerging Ags without compromising the patient's natural immunity has remained elusive. To address this deficiency, we have developed an Ag-specific adeno-associated virus (AAV) immunotherapy that will restore tolerance in a Treg-dependent manner. Using multiple strains of mice with different genetic and immunological backgrounds, we demonstrate that a liver directed AAV vector expressing a single transgene can prevent experimental autoimmune encephalomyelitis from developing and effectively mitigate pre-existing or established disease that was induced by one or more auto-reactive myelin oligodendrocyte glycoprotein-derived peptides. Overall, the results suggests that AAV can efficiently restore Ag-specific immune tolerance to an immunogenic protein that is neither restricted by the major histocompatibility complex haplotype, nor by the specific antigenic epitope(s) presented. These findings may pave the way for developing a comprehensive Ag-specific immunotherapy that does not require prior knowledge of the specific immunogenic epitopes and that may prove to be universally applicable to all MS patients, and adaptable for other autoimmune diseases.

3.
Elife ; 62017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231167

RESUMO

The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.


Assuntos
Células-Tronco Embrionárias/citologia , Glucose/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Nucleotídeos/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Via de Pentose Fosfato , Gravidez , Edulcorantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...