Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 83, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888737

RESUMO

Bacillus species appearas the most attractive plant growth-promoting rhizobacteria (PGPR) and alternative to synthetic chemical pesticides. The present study examined the antagonistic potential of spore forming-Bacilli isolated from organic farm soil samples of Allahabad, India. Eighty-seven Bacillus strains were isolated and characterized based on their morphological, plant growth promoting traits and molecular characteristics. The diversity analysis used 16S-rDNA, BOX-element, and enterobacterial repetitive intergenic consensus. Two strains, PR30 and PR32, later identified as Bacillus sp., exhibited potent in vitro antagonistic activity against Ralstonia solanaceorum. These isolates produced copious amounts of multiple PGP traits, such as indole-3-acetic acid (40.0 and 54.5 µg/mL), phosphate solubilization index (PSI) (4.4 and 5.3), ammonia, siderophore (3 and 4 cm), and 1-aminocyclopropane-1-carboxylate deaminase (8.1and 9.2 µM/mg//h) and hydrogen cyanide. These isolates were subjected to the antibiotic sensitivity test. The two potent isolates based on the higher antagonistic and the best plant growth-promoting ability were selected for plant growth-promoting response studies in tomatoe, broccoli, and chickpea. In the pot study, Bacillus subtilis (PR30 and PR31) showed significant improvement in seed germination (27-34%), root length (20-50%), shoot length (20-40%), vigor index (50-75%), carotenoid content (0.543-1.733), and lycopene content (2.333-2.646 mg/100 g) in tomato, broccoli, and chickpea. The present study demonstrated the production of multiple plant growth-promoting traits by the isolates and their potential as effective bioinoculants for plant growth promotion and biocontrol of phytopathogens.


Assuntos
Bacillus , Biodiversidade , Microbiologia do Solo , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Índia , Raízes de Plantas/microbiologia , Cicer/microbiologia , Cicer/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Rizosfera , Filogenia , Antibiose , Sideróforos/metabolismo , Ácidos Indolacéticos/metabolismo
2.
Planta ; 257(2): 27, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583789

RESUMO

MAIN CONCLUSION: This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.


Assuntos
Agricultura , Microbiota , Agricultura/métodos , Produtos Agrícolas , Solo/química , Sustento , Microbiologia do Solo
3.
Front Plant Sci ; 13: 952212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991457

RESUMO

Plant growth-promoting bacteria (PGPB) Azotobacter spp. is the most promising bacteria among all microorganisms. It is an aerobic, free-living, and N2-fixing bacterium that commonly lives in soil, water, and sediments. It can be used as a biofertilizer for plant growth and nutrient utilization efficiency. Maize is the highly consumed cereal food crop of the cosmopolitan population, and the sustainable maize productivity achieved by applying bacteria in combination with nitrogen phosphorus potassium (NPK) is promising. In the present study, a bacterial isolate (PR19). Azotobacter nigricans, obtained from the soil of an organic farm was evaluated for its plant growth promoting potential alone and in combination with an inorganic fertilizer (NPK) included. The bacterial cultue (PR19) was screened for its morphological, biochemical, and plant growth-promoting characteristics, sequenced by the 16S rDNA method, and submitted to NCBI for the confirmation of strain identification. Further, the inoculation effect of the bacterial culture (PR19) in combination with NPK on growth and yield parameters of maize under pot were analyzed. Based on phenotypic and molecular characteristics, PR19 was identified as Azotobacter nigricans it was submitted to NCBI genbank under the accession No. KP966496. The bacterial isolate possessed multiple plant growth-promoting (MPGP) traits such as the production of ammonia, siderophore, indole-3-acetic acid (IAA), and ACC Deaminase (ACCD). It showed phosphate solubilization activity and tolerance to 20% salt, wide range of pH 5-9, higher levels of trace elements and heavy metals, and resistance to multiple antibiotics. PR19 expressed significantly increased (p < 0.001) antioxidant enzyme activities (SOD, CAT, and GSH) under the abiotic stress of salinity and pH. In vitro condition, inoculation of maize with the PR19 showed a significant increase in seed germination and enhancement in elongation of root and shoot compared to untreated control. The combined application of the PR19 and NPK treatments showed similar significant results in all growth and yield parameters of maize variety SHIATS-M S2. This study is the first report on the beneficial effects of organic farm isolated PR19-NPK treatment combinations on sustainable maize productivity.

4.
Microorganisms ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361927

RESUMO

Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...