Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(27): 5676-5681, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38922286

RESUMO

This study presents an effective route to access functionalizable fluorinated enamides characterized by their high regiospecificity around the allenamide. Synthetic applications of the resulting difluorocarbonyl-bearing enamide products were pursued through straightforward synthetic transformations to prepare unknown functionalized valuable halogenated O-heterocycles and C5 skeletons. Experimental mechanistic studies showed that hydrodifluoroalkylation occurs via a hidden Brønsted acid activation, thereby establishing a new electrophilic activation mode for allenamide through a conjugated iminium intermediate.

2.
J Org Chem ; 89(9): 5927-5940, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38651750

RESUMO

A key factor in the development of selective nucleophilic addition to allenamides is controlling the reactivity of electrophilic intermediates, which is generally achieved using an electrophilic activator via conjugated iminium intermediates. In this combined experimental and computational study, we show that a general and highly chemoselective hydroamination of allenamides can be accomplished using a combination of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and NaOAc. Experimental mechanistic studies revealed that HFIP mediates proton transfer to activate the allenamide, while the acetate additive significantly contributes to N-selective interception. This strategy enables a general hydroamination of allenamides without the use of metals. We demonstrated that various functionalized 1,3-diamines could be readily synthesized and diversified into value-added structural motifs. Detailed mechanistic investigations using the density functional theory revealed the role of NaOAc in the formation of reactive electrophilic intermediates, which ultimately governed the selective formation of 1,3-diamine products. Critically, calculations of the potential energy surface around the proton-transfer transition state revealed that two different reactive electrophilic intermediates were formed when NaOAc was added.

3.
Org Lett ; 25(30): 5574-5578, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37489808

RESUMO

The 1,1,1,3,3,3-hexafluoro-2-propanol-assisted allenamide activation enables metal-free regioselective intermolecular interception of amines, constituting a general C-N bond formation process for accessing value-added 1,3-diamines. Exclusive N-chemoselectivity (vs C for anilines) and regioselectivity were achieved for a broad range of substrates. Late-stage modification and further transformations of the 1,3-diamine products showcased the practicability and benefits of this strategy. Experimental mechanistic studies revealed that 1,1,1,3,3,3-hexafluoro-2-propanol mediates the proton transfer for activation of the allenamide. Density functional theory computations revealed the role of NaOAc in the formation of the reactive electrophilic intermediate, which ultimately governs the selective formation of the 1,3-diamine product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...