Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601857

RESUMO

Genetic variation in Arctic species is often influenced by vicariance during the Pleistocene, as ice sheets fragmented the landscape and displaced populations to low- and high-latitude refugia. The formation of secondary contact or suture zones during periods of ice sheet retraction has important consequences on genetic diversity by facilitating genetic connectivity between formerly isolated populations. Brant geese (Branta bernicla) are a maritime migratory waterfowl (Anseriformes) species that almost exclusively uses coastal habitats. Within North America, brant geese are characterized by two phenotypically distinct subspecies that utilize disjunct breeding and wintering areas in the northern Pacific and Atlantic. In the Western High Arctic of Canada, brant geese consist of individuals with an intermediate phenotype that are rarely observed nesting outside this region. We examined the genetic structure of brant geese populations from each subspecies and areas consisting of intermediate phenotypes using mitochondrial DNA (mtDNA) control region sequence data and microsatellite loci. We found a strong east-west partition in both marker types consistent with refugial populations. Within subspecies, structure was also observed at mtDNA while microsatellite data suggested the presence of only two distinct genetic clusters. The Western High Arctic (WHA) appears to be a secondary contact zone for both Atlantic and Pacific lineages as mtDNA and nuclear genotypes were assigned to both subspecies, and admixed individuals were observed in this region. The mtDNA sequence data outside WHA suggests no or very restricted intermixing between Atlantic and Pacific wintering populations which is consistent with published banding and telemetry data. Our study indicates that, although brant geese in the WHA are not a genetically distinct lineage, this region may act as a reservoir of genetic diversity and may be an area of high conservation value given the potential of low reproductive output in this species.

2.
Mol Ecol ; 32(13): 3641-3656, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096383

RESUMO

During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice-free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long-term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre- and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short-lived LGM peak.


Assuntos
Genoma Mitocondrial , Ursidae , Animais , Ursidae/genética , Alaska , Refúgio de Vida Selvagem , América do Norte
3.
Mol Ecol ; 31(20): 5231-5248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35972323

RESUMO

Episodes of Quaternary environmental change shaped the genomes of extant species, influencing their response to contemporary environments, which are changing rapidly. Island endemics are among the most vulnerable to such change, accounting for a disproportionate number of recent extinctions. To prevent extinctions and conserve island biodiversity it is vital to combine knowledge of species' ecologies with their complex evolutionary histories. The Bering Sea has a history of cyclical island isolation and reconnection, coupled with modern rates of climate change that exceed global averages. The endangered Pribilof Island shrew (Sorex pribilofensis) is endemic to St. Paul Island, Alaska, which was isolated from mainland Beringia ~14,000 years ago by rising sea levels. Using ~11,000 single nucleotide polymorphisms, 17 microsatellites and mitochondrial sequence data, we test predictions about the evolutionary processes driving shrew speciation across Beringia. Our data show considerable differentiation of S. pribilofensis from mainland sibling species, relative to levels of divergence between mainland shrews. We also find a genome-wide loss of diversity and extremely low Ne for S. pribilofensis. We then show that intraspecific genetic diversity is significantly related to interspecific divergence, and that differentiation between S. pribilofensis and other Beringian shrews is highest across loci that are fixed in S. pribilofensis, indicating that strong drift has driven differentiation of this island species. Our findings show that drift as a consequence of Arctic climate cycling can rapidly reshape insular biodiversity. Arctic island species that lack genomic diversity and have evolved in response to past climate may have limited ability to respond to modern environmental changes.


Assuntos
Deriva Genética , Musaranhos , Animais , Biodiversidade , Evolução Biológica , Mudança Climática , Especiação Genética , Variação Genética/genética , Ilhas , Filogenia , Musaranhos/genética
4.
Proc Natl Acad Sci U S A ; 119(24): e2200016119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666863

RESUMO

The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.


Assuntos
Evolução Biológica , Hibridização Genética , Ursidae , Animais , Fluxo Gênico , Genoma/genética , Filogenia , Ursidae/genética
5.
Mol Biol Rep ; 47(11): 8377-8383, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33099758

RESUMO

Merlins, Falco columbarius, breed throughout temperate and high latitude habitats in Asia, Europe, and North America. Like peregrine falcons, F. peregrinus, merlins underwent population declines during the mid-to-late twentieth century, due to organochlorine-based contamination, and have subsequently recovered, at least in North American populations. To better understand levels of genetic diversity and population structuring in contemporary populations and to assess the impact of the twentieth century decline, we used genomic data archived in public databases and constructed genomic libraries to isolate and characterize a suite of 17 microsatellite markers for use in merlins. We also conducted cross-amplification experiments to determine the markers' utility in peregrine falcons and gyrfalcons, F. rusticolus. These markers provide a valuable addition to marker suites that can be used to determine individual identity and conduct genetic analyses on merlins and congeners.


Assuntos
Ecossistema , Falconiformes/genética , Variação Genética , Repetições de Microssatélites/genética , Alelos , Animais , Ásia , DNA/genética , DNA/isolamento & purificação , Europa (Continente) , Falconiformes/classificação , Genética Populacional/métodos , Biblioteca Genômica , Genótipo , América do Norte , Especificidade da Espécie
6.
PLoS One ; 15(8): e0237444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813753

RESUMO

Animal structural body size and condition are often measured to evaluate individual health, identify responses to environmental change and food availability, and relate food availability to effects on reproduction and survival. A variety of condition metrics have been developed but relationships between these metrics and vital rates are rarely validated. Identifying an optimal approach to estimate the body condition of polar bears is needed to improve monitoring of their response to decline in sea ice habitat. Therefore, we examined relationships between several commonly used condition indices (CI), body mass, and size with female reproductive success and cub survival among polar bears (Ursus maritimus) measured in two subpopulations over three decades. To improve measurement and application of morphometrics and CIs, we also examined whether CIs are independent of age and structural size-an important assumption for monitoring temporal trends-and factors affecting measurement precision and accuracy. Maternal CIs and mass measured the fall prior to denning were related to cub production. Similarly, maternal CIs, mass, and length were related to the mass of cubs or yearlings that accompanied her. However, maternal body mass, but not CIs, measured in the spring was related to cub production and only maternal mass and length were related to the probability of cub survival. These results suggest that CIs may not be better indicators of fitness than body mass in part because CIs remove variation associated with body size that is important in affecting fitness. Further, CIs exhibited variable relationships with age for growing bears and were lower for longer bears despite body length being related to cub survival and female reproductive success. These results are consistent with findings from other species indicating that body mass is a useful metric to link environmental conditions and population dynamics.


Assuntos
Tamanho Corporal , Ursidae/fisiologia , Animais , Regiões Árticas , Cruzamento , Ecossistema , Feminino , Masculino , Oceanos e Mares , Reprodução/fisiologia , Estações do Ano , Ursidae/crescimento & desenvolvimento
7.
Genes Genomics ; 41(9): 1015-1026, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134591

RESUMO

BACKGROUND: In the North Pacific, northern fulmar (Fulmarus glacialis) forms extensive colonies in few locales, which may lead to limited gene flow and locale-specific population threats. In the Atlantic, there are thousands of colonies of varying sizes and in Europe the species is considered threatened. Prior screens and classical microsatellite development in fulmar failed to provide a suite of markers adequate for population genetics studies. OBJECTIVES: The objective of this study was to isolate a suite of polymorphic microsatellite loci with sufficient variability to quantify levels of gene flow, population affinity, and identify familial relationships in fulmar. We also performed a cross-species screening of these markers in eight other species. METHODS: We used shotgun sequencing to isolate 26 novel microsatellite markers in fulmar to screen for variability using individuals from two distinct regions: the Pacific (Chagulak Island, Alaska) and the Atlantic (Hafnarey Island, Iceland). RESULTS: Polymorphism was present in 24 loci in Chagulak and 23 in Hafnarey, while one locus failed to amplify in either colony. Polymorphic loci exhibited moderate levels of genetic diversity and this suite of loci uncovered genetic structuring between the regions. Among the other species screened, polymorphism was present in one to seven loci. CONCLUSION: The loci yielded sufficient variability for use in population studies and estimation of familial relationships; as few as five loci provide resolution to determine individual identity. These markers will allow further insight into the global population dynamics and phylogeography of fulmars. We also demonstrated some markers are transferable to other species.


Assuntos
Aves/genética , Repetições de Microssatélites , Filogenia , Polimorfismo Genético , Animais , Aves/classificação , Evolução Molecular , Amplificação de Genes , Fluxo Gênico
8.
J Plant Res ; 131(5): 879-885, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29687245

RESUMO

Codominant marker systems are better suited to analyze population structure and assess the source of an individual in admixture analyses. Currently, there is no codominant marker system using microsatellites developed for the sea sandwort, Honckenya peploides (L.) Ehrh., an early colonizer in island systems. We developed and characterized novel microsatellite loci from H. peploides, using reads collected from whole genome shotgun sequencing on a 454 platform. The combined output from two shotgun runs yielded a total of 62,669 reads, from which 58 loci were screened. We identified 12 polymorphic loci that amplified reliably and exhibited disomic inheritance. Microsatellite data were collected and characterized for the 12 polymorphic loci in two Alaskan populations of H. peploides: Fossil Beach, Kodiak Island (n = 32) and Egg Bay, Atka Island (n = 29). The Atka population exhibited a slightly higher average number of alleles (3.9) and observed heterozygosity (0.483) than the Kodiak population (3.3 and 0.347, respectively). The overall probability of identity values for both populations was PID = 2.892e-6 and PIDsib = 3.361e-3. We also screened the 12 polymorphic loci in Wilhelmsia physodes (Fisch. ex Ser.) McNeill, the most closely related species to H. peploides, and only one locus was polymorphic. These microsatellite markers will allow future investigations into population genetic and colonization patterns of the beach dune ruderal H. peploides on new and recently disturbed islands.


Assuntos
Caryophyllaceae/genética , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Alelos , Loci Gênicos/genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala
9.
PLoS One ; 12(11): e0188185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149202

RESUMO

Subspecies relationships within the peregrine falcon (Falco peregrinus) have been long debated because of the polytypic nature of melanin-based plumage characteristics used in subspecies designations and potential differentiation of local subpopulations due to philopatry. In North America, understanding the evolutionary relationships among subspecies may have been further complicated by the introduction of captive bred peregrines originating from non-native stock, as part of recovery efforts associated with mid 20th century population declines resulting from organochloride pollution. Alaska hosts all three nominal subspecies of North American peregrine falcons-F. p. tundrius, anatum, and pealei-for which distributions in Alaska are broadly associated with nesting locales within Arctic, boreal, and south coastal maritime habitats, respectively. Unlike elsewhere, populations of peregrine falcon in Alaska were not augmented by captive-bred birds during the late 20th century recovery efforts. Population genetic differentiation analyses of peregrine populations in Alaska, based on sequence data from the mitochondrial DNA control region and fragment data from microsatellite loci, failed to uncover genetic distinction between populations of peregrines occupying Arctic and boreal Alaskan locales. However, the maritime subspecies, pealei, was genetically differentiated from Arctic and boreal populations, and substructured into eastern and western populations. Levels of interpopulational gene flow between anatum and tundrius were generally higher than between pealei and either anatum or tundrius. Estimates based on both marker types revealed gene flow between augmented Canadian populations and unaugmented Alaskan populations. While we make no attempt at formal taxonomic revision, our data suggest that peregrine falcons occupying habitats in Alaska and the North Pacific coast of North America belong to two distinct regional groupings-a coastal grouping (pealei) and a boreal/Arctic grouping (currently anatum and tundrius)-each comprised of discrete populations that are variously intra-regionally connected.


Assuntos
DNA Mitocondrial/genética , Falconiformes/genética , Fluxo Gênico , Especiação Genética , Filogenia , Alaska , Animais , Cruzamento , Canadá , Falconiformes/classificação , Plumas/anatomia & histologia , Feminino , Loci Gênicos , Variação Genética , Masculino , Repetições de Microssatélites , Filogeografia , Pigmentação/genética
10.
Ecol Evol ; 7(1): 107-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28070279

RESUMO

How populations and communities reassemble following disturbances are affected by a number of factors, with the arrival order of founding populations often having a profound influence on later populations and community structure. Kasatochi Island is a small volcano located in the central Aleutian archipelago that erupted violently August 8, 2008, sterilizing the island of avian biodiversity. Prior to the eruption, Kasatochi was the center of abundance for breeding seabirds in the central Aleutian Islands and supported several breeding pairs of peregrine falcons (Falco peregrinus). We examined the reestablishment of peregrine falcons on Kasatochi by evaluating the genetic relatedness among legacy samples collected in 2006 to those collected posteruption and to other falcons breeding along the archipelago. No genotypes found in posteruption samples were identical to genotypes collected from pre-eruption samples. However, genetic analyses suggest that individuals closely related to peregrine falcons occupying pre-eruption Kasatochi returned following the eruption and successfully fledged young; thus, a genetic legacy of pre-eruption falcons was present on posteruption Kasatochi Island. We hypothesize that the rapid reestablishment of peregrine falcons on Kasatochi was likely facilitated by behavioral characteristics of peregrine falcons breeding in the Aleutian Islands, such as year-round residency and breeding site fidelity, the presence of an abundant food source (seabirds), and limited vegetation requirements by seabirds and falcons.

11.
Evol Appl ; 9(6): 805-17, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27330556

RESUMO

Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

12.
PLoS One ; 11(4): e0152701, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27104836

RESUMO

Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From populations in both LMEs, we characterize genetic diversity, population structure, and polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear sequence data. An inverse relationship between genetic diversity and latitude was observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047), as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001). Variance in allele frequency was significantly partitioned by region only in cases when a population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead included with populations in the Eastern Bering Sea LME (θp = 0.128-0.172; P < 0.003), suggesting gene flow between the two LMEs in this region. Gene flow among locales was rarely symmetrical, with notable exceptions generally following net coastal ocean current direction. Genetic data failed to support recent proposals that multiple Zostera species (i.e. Z. japonica and Z. angustifolia) are codistributed with Z. marina in Alaska. Comparative analyses also failed to support the hypothesis that eelgrass populations in the North Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refugia. These data suggest northeastern Pacific populations are derived from populations expanding northward from temperate populations following climate amelioration at the terminus of the last Pleistocene glaciation.


Assuntos
Variação Genética , Zosteraceae/genética , Alaska , Repetições de Microssatélites/genética , Oceano Pacífico
14.
PLoS One ; 10(1): e112021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562525

RESUMO

We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Estruturas Genéticas , Variação Genética , Ursidae/genética , Animais , Regiões Árticas , DNA Mitocondrial/química , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Genótipo , Geografia , Haplótipos , Camada de Gelo , Repetições de Microssatélites/genética , Filogenia , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA , Ursidae/classificação , Ursidae/crescimento & desenvolvimento
15.
Proc Natl Acad Sci U S A ; 109(36): E2382-90, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22826254

RESUMO

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Assuntos
Adaptação Biológica/genética , Mudança Climática/história , Evolução Molecular , Genética Populacional , Genoma/genética , Ursidae/genética , Animais , Regiões Árticas , Sequência de Bases , Marcadores Genéticos/genética , História Antiga , Dados de Sequência Molecular , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA , Especificidade da Espécie
16.
PLoS One ; 5(11): e14042, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21124969

RESUMO

BACKGROUND: Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (F(ST) and D(EST)), and effective population size (N(e)). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these genetic measures provide a metric by which we can gauge our progress and help make important management decisions. METHODOLOGY/PRINCIPAL FINDINGS: The peregrine falcon in North America (Falco peregrinus tundrius and anatum) was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci suggest limited differentiation that can be attributed to an isolation by distance relationship and warrant no delineation of these two subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985-2007), no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean N(e) were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods. CONCLUSIONS/SIGNIFICANCE: These results, including those from simulations to assess the power of each method to estimate N(e), suggest a stable or growing population, which is consistent with ongoing field-based monitoring surveys. Therefore, historic and continuing efforts to prevent the extinction of the peregrine falcon in North America appear successful with no indication of recent decline, at least from the northern latitude range-wide perspective. The results also further highlight the importance of archiving samples and their use for continual assessment of population recovery and long-term viability.


Assuntos
Falconiformes/genética , Variação Genética , Repetições de Microssatélites/genética , Migração Animal , Animais , Biodiversidade , Cruzamento , Canadá , Núcleo Celular/genética , Falconiformes/classificação , Falconiformes/crescimento & desenvolvimento , Feminino , Frequência do Gene , Genética Populacional , Genótipo , Geografia , Groenlândia , Desequilíbrio de Ligação , Masculino , América do Norte , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Estados Unidos
17.
J Hered ; 100(6): 681-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19633212

RESUMO

Polar bears (Ursus maritimus) are unique among bears in that they are adapted to the Arctic sea ice environment. Genetic data are useful for understanding their evolution and can contribute to management. We assessed parentage and relatedness of polar bears in the southern Beaufort Sea, Alaska, with genetic data and field observations of age, sex, and mother-offspring and sibling relationships. Genotypes at 14 microsatellite DNA loci for 226 bears indicate that genetic variation is comparable to other populations of polar bears with mean number of alleles per locus of 7.9 and observed and expected heterozygosity of 0.71. The genetic data verified 60 field-identified mother-offspring pairs and identified 10 additional mother-cub pairs and 48 father-offspring pairs. The entire sample of related and unrelated bears had a mean pairwise relatedness index (r(xy)) of approximately zero, parent-offspring and siblings had r(xy) of approximately 0.5, and 5.2% of the samples had r(xy) values within the range expected for parent-offspring. Effective population size (N(e) = 277) and the ratio of N(e) to total population size (N(e)/N = 0.182) were estimated from the numbers of reproducing males and females. N(e) estimates with genetic methods gave variable results. Our results verify and expand field data on reproduction by females and provide new data on reproduction by males and estimates of relatedness and N(e) in a polar bear population.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Ursidae/genética , Alaska , Animais , Feminino , Frequência do Gene , Genótipo , Masculino , Repetições de Microssatélites/genética , Modelos Genéticos , Linhagem , Densidade Demográfica
18.
Mol Ecol ; 14(4): 917-31, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15773925

RESUMO

Relatively little genetic variation has been uncovered in surveys across North American wolf populations. Pacific Northwest coastal wolves, in particular, have never been analysed. With an emphasis on coastal Alaska wolf populations, variation at 11 microsatellite loci was assessed. Coastal wolf populations were distinctive from continental wolves and high levels of diversity were found within this isolated and relatively small geographical region. Significant genetic structure within southeast Alaska relative to other populations in the Pacific Northwest, and lack of significant correlation between genetic and geographical distances suggest that differentiation of southeast Alaska wolves may be caused by barriers to gene flow, rather than isolation by distance. Morphological research also suggests that coastal wolves differ from continental populations. A series of studies of other mammals in the region also has uncovered distinctive evolutionary histories and high levels of endemism along the Pacific coast. Divergence of these coastal wolves is consistent with the unique phylogeographical history of the biota of this region and re-emphasizes the need for continued exploration of this biota to lay a framework for thoughtful management of southeast Alaska.


Assuntos
Variação Genética , Lobos/genética , Alaska , Animais , Colúmbia Britânica , Frequência do Gene , Genótipo , Geografia , Repetições de Microssatélites/genética , Dinâmica Populacional , Yukon
19.
Mol Ecol ; 14(3): 711-22, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723663

RESUMO

The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using theta(ST) values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest theta(ST) (0.13-0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (theta(ST) = 0.04-0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Niño Southern Oscillation (ENSO) events along the Pacific coast.


Assuntos
Variação Genética , Genética Populacional , Filogenia , Zosteraceae/genética , Análise de Variância , Análise por Conglomerados , Demografia , Frequência do Gene , Geografia , Repetições de Microssatélites/genética , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...