Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36682328

RESUMO

The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.


Assuntos
Antiprotozoários , Giardia lamblia , Metronidazol/farmacologia , Antiprotozoários/farmacologia , Ferredoxinas/genética , Ferredoxinas/metabolismo , Piruvato Sintase/genética , Piruvato Sintase/metabolismo , Giardia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Variação Genética
2.
Infect Drug Resist ; 13: 4531-4545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376360

RESUMO

PURPOSE: The flavohemoprotein (gFlHb) in Giardia plays an important role in managing nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia assemblages A and B clinical isolates. METHODS: gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR fragments from each isolate were analyzed for single nucleotide variants (SNVs) and compared to genomic Illumina sequence data. Identical clone sequences were sorted into alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed by mining PacBio de novo assembled genomes in eight isolates. Homology models for assessment of SNV's potential impact on protein function were created using Phyre2. RESULTS: A variable copy number of the gFlHb gene, between two and six copies, depending on isolate, was found. A total of 37 distinct sequences, representing different alleles of the gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some isolates, up to 12 different alleles were found. The total allelic diversity was high for both assemblages (>0.9) and was coupled with a nucleotide diversity of <0.01. The genetic variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein structure and possibly function. CONCLUSION: In this study, we present evidence that gFlHb, a putative protective enzyme against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability against metronidazole toxicity.

3.
Infect Drug Resist ; 12: 1221-1235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190910

RESUMO

Purpose: Treatment-refractory Giardia cases have increased rapidly within the last decade. No markers of resistance nor a standardized susceptibility test have been established yet, but several enzymes and their pathways have been associated with metronidazole (MTZ) resistant Giardia. Very limited data are available regarding genetic variation in these pathways. We aimed to investigate genetic variation in metabolic pathway genes proposed to be involved in MTZ resistance in recently acquired, cultured clinical isolates. Methods: Whole genome sequencing of 12 assemblage A2 and 8 assemblage B isolates was done, to decipher genomic variation in Giardia. Twenty-nine genes were identified in a literature search and investigated for their single nucleotide variants (SNVs) in the coding/non-coding regions of the genes, either as amino acid changing (non-synonymous SNVs) or non-changing SNVs (synonymous). Results: In Giardia assemblage B, several genes involved in MTZ activation or oxidative stress management were found to have higher numbers of non-synonymous SNVs (thioredoxin peroxidase, nitroreductase 1, ferredoxin 2, NADH oxidase, nitroreductase 2, alcohol dehydrogenase, ferredoxin 4 and ferredoxin 1) than the average variation. For Giardia assemblage A2, the highest genetic variability was found in the ferredoxin 2, ferredoxin 6 and in nicotinamide adenine dinucleotide phosphate (NADPH) oxidoreductase putative genes. SNVs found in the ferredoxins and nitroreductases were analyzed further by alignment and homology modeling. SNVs close to the iron-sulfur cluster binding sites in nitroreductase-1 and 2 and ferredoxin 2 and 4 could potentially affect protein function. Flavohemoprotein seems to be a variable-copy gene, due to higher, but variable coverage compared to other genes investigated. Conclusion: In clinical Giardia isolates, genetic variability is common in important genes in the MTZ metabolizing pathway and in the management of oxidative and nitrosative stress and includes high numbers of non-synonymous SNVs. Some of the identified amino acid changes could potentially affect the respective proteins important in the MTZ metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...